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Overview

Introduction: notation/definitions, statement of the problem
Warm-up: quadratics

Cubics: the Cardano covariant “fingerprint”

Cubics: using the bicovariant to recover the transform
Quartics
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Elliptic curve applications

See http://arxiv.org/abs/2212.02120 for binary
cubics, and
http://dx.doi.org/10.1016/7j.3sc.2008.09.004
(joint with Tom Fisher) for binary quartics.


http://arxiv.org/abs/2212.02120
http://dx.doi.org/10.1016/j.jsc.2008.09.004

Notations and definitions

> K is afield with char(K) # 2, 3;

» B,(K) is the set of degree n binary forms g(X,Y) € K[X, Y]
(homogeneous of degree n, coefficients in K);

» For g € B,(K), A = disc(g) is homogeneous of
degree 2n — 2 in the coefficients of g;

» foreach A € K*, B,(K;A) = {g € B,(K) | disc(g) = A}.

» GL(2,K) acts on B,(K): we will use a twisted action where

M = (: i) € GL(2,K) takes g to g™:

(X, Y) = det(M) ' g(rX +1Y,sX +uY) = det(M) " 'g(X, Y'),

where (X' Y') = (X Y)M.
> disc(gM) = det(M) D=2 disc(g).



Statement of the problem

Fix K and A € K*. Let g1,g2 € B,(K; A).
» Are g; and g, equivalent under the action of GL(2,K)?
> If so, find M € GL(2,K) with g, = g!.
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Fix K and A € K*. Let g1,g2 € B,(K; A).
» Are g; and g, equivalent under the action of GL(2,K)?
> If so, find M € GL(2,K) with g, = g!.

We may also ask the same question replacing GL(2, K) with

SL(2,K). In any case, for the discriminant to preserved by the
action so we must have det(M)"*~D(=2) — |,
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which is preserved by the twisted GL(2, K)-action.

If a #0then M = <—2b 20a> with det(M) = 4a # 0 takes g to
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Quadratics

The discriminant of g(X, Y) = aX? + bXY + cY? is A = b? — 4ac,
which is preserved by the twisted GL(2, K)-action.

If a #0then M = <—2b 20a> with det(M) = 4a # 0 takes g to

gM(X,Y) =X> — JAY2

lfa=0then A = p? and m — (2L F00)/b 25
1—bc b

det(M) = —4b # 0 also takes g to g™ (X,Y) = X*> — JAY>.

Hence all forms with the same discriminant are

GL(2, K)-equivalent, and using these explicit matrices we can
transform any one into any other one.
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Cubics

Consider binary cubic forms g € B3(K; A).
Since disc(gM) = det(M)? disc(g), a matrix transforming a cubic
into one with the same discriminant must have determinant +1.

Noting that < (1)> takes g(X,Y) to g(—X,Y), we concentrate

0
on SL(2, K)-equivalence.
Write g(X,Y) = aX® + bX?Y + cXY? + dY? and set

P = b* — 3ac, and U =2b’ +27d*d — 9abc;
these “seminvariants” satisfy the syzygy

4P = U? + 27Ad%. (1)



The quadratic resolvent and Cardano invariant

For fixed A € K* define the resolvent algebra
L=K(vV=3A) = K[T]/(T* 4+ 3A) = K[d],

which is a quadratic extension' of K, with §2 = —3A.

'L is afield, unless v/=3A € K, when L = K ® K.



The quadratic resolvent and Cardano invariant

For fixed A € K* define the resolvent algebra
L=K(vV=3A) = K[T]/(T* 4+ 3A) = K[d],

which is a quadratic extension' of K, with §2 = —3A.

To each g € B3(K; A) we assign an element of L* called the
Cardano invariant. When P # 0 this is given by

z2(g) = %(U—F 3ad).

The syzygy (1) can then be written N; /x(z) = P3.

'L is afield, unless v/=3A € K, when L = K ® K.



The Cardano invariant (continued)
In the general case, the definition of z(g) is a little more
involved: one can show that for all the transforms g¥ of g with
P(gM) # 0, the value of z(g") is the same modulo cubes, so we
always have a well-defined map

7: B3(K; A) — L*/L*.
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The Cardano invariant (continued)
In the general case, the definition of z(g) is a little more
involved: one can show that for all the transforms g¥ of g with
P(gM) # 0, the value of z(g") is the same modulo cubes, so we
always have a well-defined map

7: B3(K; A) — L*/L*.
In fact, P is the leading coefficient of the Hessian covariant of g,
H(X,Y) = (b* — 3ac)X* + (bc — 9ad)XY + (c* — 3bd)Y?;
there is also a cubic covariant
G(X,Y) = (2b® 4 27a*d — 9abc)X? + 3(b*c + 9abd — 6ac*)X>Y
— 3(bc® + 9acd — 6b°d)XY? — (2¢ + 27ad* — 9bed)Y?,
and these satisfy the syzygy
4H(X,Y)? = G(X,Y)* +27Ag(X, Y)*. (2)
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(whose leading coefficient C(1,0) = 3(U + 3a6)) and the
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The Cardano invariant (continued)

From these we may form the Cardano covariantin L[X, Y]
1

(whose leading coefficient C(1,0) = 3(U + 3a6)) and the
covariant syzygy (2) can be written as

Nk(C(X,Y)) = H(X,Y)*,
The general definition of the Cardano invariant in L*/L*3 is any

specialization C(x,y) with x,y € K such that H(x,y) # 0. This
lies in the kernel of the norm:

2(g) € (L*/L*)n=1 := ker(L*/L*> — K*/K*?).



The Cardano invariant as a fingerprint for cubics

Our first main theorem for cubics may be summarised is:

The Cardano group (L*/L**)y—;
exactly parametrises
the SL(2, K)-orbits on B3(K; A).




The Cardano invariant as a fingerprint for cubics

Our first main theorem for cubics may be summarised is:

The Cardano group (L*/L**)y—;
exactly parametrises
the SL(2, K)-orbits on B3(K; A).

Details follow shortly, after we make a couple of digressions. ..



Why “Cardano” invariant?

Cardano’s formula? for the roots of the cubic g(X, 1) € K[X] is
simply
where z = (U + 3ad)/2 and § = /—3A.
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Why “Cardano” invariant?

Cardano’s formula? for the roots of the cubic g(X, 1) € K[X] is
simply

where z = (U + 3ad)/2 and § = /—3A.

From this we may guess that g has a root in K if and only if the

Cardano invariant is a cube, i.e., trivial in L*/L*3, which is true:
if w= /z € L*, then ww = P, and the formula is

x=—(b+w+w)/3a € K.

2Gerolamo Cardano (1501-1576)
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Digression: how to write down cubic extensions

We know that quadratic extensions of K all have the form
K(y/a) with a € K* non-square, so they are parametrized by the
nontrivial elements of the group K*/K*2.

Cubics do not all have the form K(/a) with a € K*/K**—these
all have discriminant of the form —3 times a square. Instead,
we may construct all cubic extensions of K, uniquely, as follows.

Fix A € K*/K*? and define L = K(v/—3A) as above. To each
z € (L*/L*?)n=1 let Ny k(z) = PP and Tr(z) = U; then the cubic
f.(X) = X* — 3PX — U has discriminant A (modulo squares), is
irreducible if and only if z is not a cube, and every cubic
extension of K arises uniquely in this way (except f, = f5).



Cubic equivalence via the Cardano invariant

Theorem (A)

Let K be any field with char(K) # 2,3, let A € K*,

let L = K[X]/(X* + 3A), and let z: B3(K;A) — L*/L*3 be the
Cardano invariant map.

1. z2(g) € (L*/L*3)n=; for all g € B3(K; A);

2. z(g) = 1 ifand only if g is reducible over K ;

3. g1,4 € B3(K; A) are SL(2, K)-equivalent if and only if
z(g1) = 2(82);

4. g1, € B3(K; A) are GL(2, K)-equivalent if and only if
z(g1) = z(g2)*" (equivalently, z(g) and z(g») generate the
same subgroup of L* /L*3);

5. z induces bijections between the SL(2, K)-orbits on
B3(K; A) and the Cardano group (L* /L**)y—,, and
between the GL(2, K)-orbits and its cyclic subgroups.



Explicit equivalence - introduction
So far we have shown how to test equivalence of two cubics
81,82 € B3(K; A), in a rather inconvenient way: test whether
two elements of the quadratic resolvent algebra L are the same
modulo cubes.



Explicit equivalence - introduction
So far we have shown how to test equivalence of two cubics
81,82 € B3(K; A), in a rather inconvenient way: test whether
two elements of the quadratic resolvent algebra L are the same
modulo cubes.
We would prefer a method which only uses arithmetic in the
base field K, and we would also like to find a transforming
matrix M with g} = g, if the test returns “yes”. Our second
result on cubics achieves this.
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Explicit equivalence - introduction
So far we have shown how to test equivalence of two cubics
81,82 € B3(K; A), in a rather inconvenient way: test whether
two elements of the quadratic resolvent algebra L are the same
modulo cubes.
We would prefer a method which only uses arithmetic in the
base field K, and we would also like to find a transforming
matrix M with g} = g, if the test returns “yes”. Our second
result on cubics achieves this.
We know that g} = g, with M € SL(2,K) iff z = z(g1)/z(g2) is a
cube in L*. But z is the Cardano invariant of a third cubic in
B3(K; A); hence g, and g, are equivalent iff a third cubic g (with
the same discriminant) has a root.
Explicitly, the third cubic is (at least when PP, # 0)

f(X) = 16X3 - 12P1P2X - (U1U2 + 27611(12A).

Can we use this to find M?



Explicit equivalence - the bi-covariant

The cubic f(X) on the previous page is related (by a simple
transform and homogenization) to the cubic form

B(Xv Y) = U1g2(X7 Y) *alGZ(Xa Y)
- Gl(lvo)gZ(X’ Y) _gl(l’O)GZ(Xv Y)v

where a;, b;, . .., P;, U; are the coefficients/covariants of g, g5.



Explicit equivalence - the bi-covariant

The cubic f(X) on the previous page is related (by a simple
transform and homogenization) to the cubic form

B(X,Y) = U1£2(X,Y) —a1G2(X,Y)
= GI(L O)gz(X’ Y) - gl(l’ O)GZ(Xa Y)7
where a;, b;, . .., P;, U; are the coefficients/covariants of g, g5.

To avoid handling special cases, we replace the specialization
(1,0) with two new variables and define

By, 0, (X1,Y1,X2, Y2) = G1 (X1, Y1)82(X2, Y2) — g1(X1, Y1)Ga (X2, Ya).

This is bi-homogeneous of degree (3,3) and is bi-covariant
(homogeneous and covariant in each set of variables
separately).



Equivalence via bi-linear factors of the bi-covariant

It is not hard to see that

X1Yy — X2V | By, g,(X1,Y1,X2,Y2) < g = *£g1.
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Equivalence via bi-linear factors of the bi-covariant
It is not hard to see that
X1Ys — X5Y| | By, o, (X1,Y1,X2,Y2) <= g2 =%g1.
Playing around with the bi-covariance of B,, ,,, one finds that

bi-linear factors of By, ,, (if any) all come from matrices M
transforming g; to g».

For M = (: i) define L, to be the bi-linear form
Ly = —sX1Xo +rX Y, — uY1 Xp + tY1 V5.

Lemma
If Ly | By, g, then det(M) € K*? and g = + det(M)'/?g;.



Explicit equivalence - conclusion

Theorem (B)

Letgi, g, € Bs(K;A). Then g, and g, are SL(2, K)-equivalent if
and only if B,, ,, has a bilinear factor in K[X;,Y,X>, Y»], and

every bilinear factor of B, 4, has the form Ly with M € SL(2,K),
where g; = g¥.
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Explicit equivalence - conclusion

Theorem (B)

Letgi, g, € Bs(K;A). Then g, and g, are SL(2, K)-equivalent if
and only if B,, ,, has a bilinear factor in K[X;,Y,X>, Y»], and
every bilinear factor of B, 4, has the form Ly with M € SL(2,K),
where g; = g¥.

We can similarly detect transforming matrices with determinant
—1 using bi-linear factors of

82(X2,Y2)G (X1, Y1) + Ga(X2, Ya)g1 (X, 1i).

This completes our discussion of cubics.



Quartics
The story for quartics is similar: Cremona & Fisher (2009).

» ¢ € B4(K) has classical invariants I, J as well as A, with
A=4P - J2.
» There is a resolvent cubic algebra
L =KI[T]/(T? = 3IT +J) = K[y).

> The algebraic invariant z(g) = }(4ayp + p) € L* with
p = 3b* — 8ac, the leading coefficient of the Hessian
covariant H(g), has square norm:

NL/K(Z) = r2,

where r = b3 + 84d — 4abc is the leading coefficient of a
sextic covariant G(g).



Quartic equivalence via the algebraic invariant

Just as for cubics we can give a better definition of the algebraic
invariant z(g) as any invertible value of the algebraic covariant

3 4og(X, 1) + H(X, )

(which has norm G(X, Y)?). Then
> z(g) is well-defined in L* /L*?;
z(g) € ker(Ny /g : L*/L** — K* /K*?);
z(g) = 1 iff g has a linear factor;
2(g1) = z(g2) iff g1, g2 are GL(2, K)-equivalent.



Quartic equivalence via the algebraic invariant

Just as for cubics we can give a better definition of the algebraic
invariant z(g) as any invertible value of the algebraic covariant
1

S (4pg(X, V) + H(X, 1))

(which has norm G(X, Y)?). Then
> z(g) is well-defined in L*/L*?;
> z(g) € ker(Ny g : L*/L** — K* /K*?);
> z(g) = 1iff g has alinear factor;
> z(g1) = z(g2) iff g1, g2 are GL(2, K)-equivalent.

NB The image of z() is a subset (not a subgroup!) of
ker(Ny g : L*/L** — K*/K*?), as it is linear in .



Construction of quartics via their cubic resolvents

We can also construct all quartics g(X) with invariants I, J by
forming the cubic resolvent algebra

L= KI[T]/(T? = 3IT + J) = K|[y], taking

z € ker(Ny /g : L*/L** — K* /K*?) with minimal polynomial

73 —pZz—i-qZ— r2,

and setting g(X) = (X? — p)?> — 81X — 4q.



Explicit equivalence of quartics via bi-covariants

If g1, 2 € B4(K) have the same invariants 1, J, let their Hessian
covariants be H,.H,.
Form the bi-covariant

F(X1,Y1,X2,Y2) = g1(X1, Y1)Ha (X2, Y2) — g2(Xo, Y2)H (X1, Y1),

which is homogeneous of bi-degree (4,4). Then
> g1, 8 are GL(2,K)-equivalent iff F(X;, Y,X,,Y2) has a
bi-linear factor;
» the coefficients of such a factor give the entries in a
matrix M with g, = g/’.
See Cremona & Fisher (2009) for detalils.
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Mordell elliptic curves are E; : Y> = X° + k; there is a 3-isogeny
¢ : E, — E_»7. Using this and its dual ¢ one can carry out
3-isogeny descent on E; and obtain information about its rank.
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Elliptic curve connections 1: cubics

Mordell elliptic curves are E; : Y? = X> + k; there is a 3-isogeny
¢ : Ep — E_»7. Using this and its dual qb one can carry out
3-isogeny descent on E; and obtain information about its rank.
There is a bijection (due to Bhargava) between H' (G, E_7[¢)])
and the set of SL(2, K)-orbits on Bs(K; —108k): elements of the
former are represented by genus one covering curves

C,: Z° = g(X,Y) with g € B3(K; —108k), and the covariant
syzygy gives the covering map C, — E since

H(x,y) G(x,y)
(32)* "2((32)%)
Hence, enumerating binary cubics up to equivalence gives

information about the size of the 3-Selmer group of these
(special) elliptic curves.

(x,9,2) € Co(K) — ( > € Ex(K).



Elliptic curve connections 2: quartics

The connection between quartics and their in/covariants
appeared in the papers of Birch and Swinnerton-Dyer in the
1960s, and a more detailed description appeared in my 2001
paper “Classical invariants and 2-descent on elliptic curves”
and the 2009 joint paper with Tom Fisher already mentioned.



Elliptic curve connections 2: quartics

The connection between quartics and their in/covariants
appeared in the papers of Birch and Swinnerton-Dyer in the
1960s, and a more detailed description appeared in my 2001
paper “Classical invariants and 2-descent on elliptic curves”
and the 2009 joint paper with Tom Fisher already mentioned.
Quartics g € B4(A) with fixed invariants 7, J define genus one
2-covering curves C, : Y2 = g(X, 1) of the elliptic curve

Erj: Y? = X3 —27IX — 27J. Again the covariant syzygy gives
the 2-covering map C, — Ej ;-

3H(x,1) 27G(x, 1)
4y2 7 8y

(x,y) € Co(K) — ( > € Er (K).



