Equivalence of binary forms over a field

John Cremona

University of Warwick

Debrecen Online Number Theory Seminar 6 December 2024

Overview

- 1. Introduction: notation/definitions, statement of the problem
- 2. Warm-up: quadratics
- 3. Cubics: the Cardano covariant "fingerprint"
- 4. Cubics: using the bicovariant to recover the transform
- 5. Quartics
- 6. Elliptic curve applications

See <http://arxiv.org/abs/2212.02120> for binary cubics, and <http://dx.doi.org/10.1016/j.jsc.2008.09.004> (joint with Tom Fisher) for binary quartics.

Notations and definitions

- \blacktriangleright *K* is a field with $char(K) \neq 2, 3$;
- ▶ $B_n(K)$ is the set of degree *n* binary forms $g(X, Y) \in K[X, Y]$ (homogeneous of degree *n*, coefficients in *K*);
- ▶ For $g \in \mathcal{B}_n(K)$, $\Delta = \text{disc}(g)$ is homogeneous of degree $2n - 2$ in the coefficients of *g*;
- ► for each $\Delta \in K^*$, $\mathcal{B}_n(K; \Delta) = \{ g \in \mathcal{B}_n(K) \mid \text{disc}(g) = \Delta \}.$
- \blacktriangleright GL(2, *K*) acts on $\mathcal{B}_n(K)$: we will use a twisted action where $M = \begin{pmatrix} r & s \ t & u \end{pmatrix} \in \operatorname{GL}(2,K)$ takes g to g^M :

$$
g^M(X,Y) = \det(M)^{-1}g(rX + tY, sX + uY) = \det(M)^{-1}g(X', Y'),
$$

where $(X' Y') = (X Y)M$. ▶ disc(g^M) = det(M)^{(*n*-1)(*n*-2)} disc(g).

Statement of the problem

Fix *K* and $\Delta \in K^*$. Let $g_1, g_2 \in \mathcal{B}_n(K; \Delta)$.

- \blacktriangleright Are g_1 and g_2 equivalent under the action of $GL(2, K)$?
- ▶ If so, find $M \in GL(2, K)$ with $g_2 = g_1^M$.

Statement of the problem

Fix *K* and $\Delta \in K^*$. Let $g_1, g_2 \in \mathcal{B}_n(K; \Delta)$.

 \blacktriangleright Are g_1 and g_2 equivalent under the action of $GL(2, K)$?

• If so, find
$$
M \in GL(2, K)
$$
 with $g_2 = g_1^M$.

We may also ask the same question replacing GL(2, *K*) with $SL(2, K)$. In any case, for the discriminant to preserved by the action so we must have $\det(M)^{(n-1)(n-2)}=1.$

Quadratics

The discriminant of $g(X, Y) = aX^2 + bXY + cY^2$ is $\Delta = b^2 - 4ac$, which is preserved by the twisted $GL(2, K)$ -action. If $a \neq 0$ then $M = \begin{pmatrix} 2 & 0 \\ -b & 2 \end{pmatrix}$ −*b* 2*a* with $\det(M) = 4a \neq 0$ takes *g* to $g^M(X, Y) = X^2 - \frac{1}{4}\Delta Y^2.$

Quadratics

The discriminant of $g(X, Y) = aX^2 + bXY + cY^2$ is $\Delta = b^2 - 4ac$, which is preserved by the twisted $GL(2, K)$ -action. If $a \neq 0$ then $M = \begin{pmatrix} 2 & 0 \\ -b & 2 \end{pmatrix}$ −*b* 2*a* with $\det(M) = 4a \neq 0$ takes *g* to $g^M(X, Y) = X^2 - \frac{1}{4}\Delta Y^2.$ If $a = 0$ then $\Delta = b^2$ and $M = \begin{pmatrix} -2(1 + bc)/b & 2b \\ 1 & bc & b^2 \end{pmatrix}$ $1 - bc$ b^2 with $\det(M) = -4b \neq 0$ also takes *g* to $g^M(X, Y) = X^2 - \frac{1}{4}\Delta Y^2$.

Quadratics

The discriminant of $g(X, Y) = aX^2 + bXY + cY^2$ is $\Delta = b^2 - 4ac$, which is preserved by the twisted $GL(2, K)$ -action. If $a \neq 0$ then $M = \begin{pmatrix} 2 & 0 \\ -b & 2 \end{pmatrix}$ −*b* 2*a* with $\det(M) = 4a \neq 0$ takes *g* to $g^M(X, Y) = X^2 - \frac{1}{4}\Delta Y^2.$ If $a = 0$ then $\Delta = b^2$ and $M = \begin{pmatrix} -2(1 + bc)/b & 2b \\ 1 & bc & b^2 \end{pmatrix}$ $1 - bc$ b^2 with $\det(M) = -4b \neq 0$ also takes *g* to $g^M(X, Y) = X^2 - \frac{1}{4}\Delta Y^2$.

Hence all forms with the same discriminant are $GL(2, K)$ -equivalent, and using these explicit matrices we can transform any one into any other one.

Cubics

Consider binary cubic forms $g \in B_3(K; \Delta)$.

Since $\operatorname{disc}(g^{M})=\det(M)^{2}\operatorname{disc}(g),$ a matrix transforming a cubic into one with the same discriminant must have determinant $+1$.

Cubics

Consider binary cubic forms $g \in \mathcal{B}_3(K; \Delta)$.

Since $\operatorname{disc}(g^{M})=\det(M)^{2}\operatorname{disc}(g),$ a matrix transforming a cubic into one with the same discriminant must have determinant ± 1 . Noting that $\begin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix}$ takes $g(X,Y)$ to $g(-X,Y)$, we concentrate on $SL(2, K)$ -equivalence.

Cubics

Consider binary cubic forms $g \in \mathcal{B}_3(K; \Delta)$.

Since $\operatorname{disc}(g^{M})=\det(M)^{2}\operatorname{disc}(g),$ a matrix transforming a cubic into one with the same discriminant must have determinant ± 1 . Noting that $\begin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix}$ takes $g(X,Y)$ to $g(-X,Y)$, we concentrate on SL(2, *K*)-equivalence. Write $g(X, Y) = aX^3 + bX^2Y + cXY^2 + dY^3$ and set

$$
P = b2 - 3ac
$$
, and $U = 2b3 + 27a2d - 9abc$;

these "seminvariants" satisfy the syzygy

$$
4P^3 = U^2 + 27\Delta a^2. \tag{1}
$$

The quadratic resolvent and Cardano invariant

For fixed ∆ ∈ *K* [∗] define the *resolvent algebra*

$$
L = K(\sqrt{-3\Delta}) = K[T]/(T^2 + 3\Delta) = K[\delta],
$$

which is a quadratic extension¹ of *K*, with $\delta^2 = -3\Delta.$

 $\overline{A^1L}$ is a field, unless $\sqrt{-3\Delta}$ ∈ *K*, when $L = K \oplus K$.

The quadratic resolvent and Cardano invariant

For fixed ∆ ∈ *K* [∗] define the *resolvent algebra*

$$
L = K(\sqrt{-3\Delta}) = K[T]/(T^2 + 3\Delta) = K[\delta],
$$

which is a quadratic extension¹ of *K*, with $\delta^2 = -3\Delta.$

To each $g \in \mathcal{B}_3(K;\Delta)$ we assign an element of L^* called the *Cardano invariant.* When $P \neq 0$ this is given by

$$
z(g) = \frac{1}{2}(U + 3a\delta).
$$

The syzygy [\(1\)](#page-8-0) can then be written $\mathrm{N}_{L/K}(z) = P^3.$

 $\overline{A^1L}$ is a field, unless $\sqrt{-3\Delta}$ ∈ *K*, when $L = K \oplus K$.

The Cardano invariant (continued) In the general case, the definition of $z(g)$ is a little more involved: one can show that for all the transforms g^M of g with $P(g^M) \neq 0,$ the value of $z(g^M)$ is *the same modulo cubes*, so we always have a well-defined map

 $z: \mathcal{B}_3(K; \Delta) \to L^*/L^{*3}.$

The Cardano invariant (continued) In the general case, the definition of $z(g)$ is a little more involved: one can show that for all the transforms g^M of g with $P(g^M) \neq 0,$ the value of $z(g^M)$ is *the same modulo cubes*, so we always have a well-defined map

 $z: \mathcal{B}_3(K; \Delta) \to L^*/L^{*3}.$

In fact, *P* is the leading coefficient of the *Hessian covariant* of *g*,

$$
H(X,Y) = (b2 – 3ac)X2 + (bc – 9ad)XY + (c2 – 3bd)Y2;
$$

The Cardano invariant (continued) In the general case, the definition of $z(g)$ is a little more involved: one can show that for all the transforms g^M of g with $P(g^M) \neq 0,$ the value of $z(g^M)$ is *the same modulo cubes*, so we always have a well-defined map

 $z: \mathcal{B}_3(K; \Delta) \to L^*/L^{*3}.$

In fact, *P* is the leading coefficient of the *Hessian covariant* of *g*,

$$
H(X,Y) = (b2 – 3ac)X2 + (bc – 9ad)XY + (c2 – 3bd)Y2;
$$

there is also a cubic covariant

$$
G(X, Y) = (2b3 + 27a2d - 9abc)X3 + 3(b2c + 9abd - 6ac2)X2Y - 3(bc2 + 9acd - 6b2d)XY2 - (2c3 + 27ad2 - 9bcd)Y3,
$$

and these satisfy the syzygy

$$
4H(X,Y)^3 = G(X,Y)^2 + 27\Delta g(X,Y)^2.
$$
 (2)

The Cardano invariant (continued)

From these we may form the *Cardano covariant* in *L*[*X*, *Y*]

$$
C(X, Y) = \frac{1}{2}(G(X, Y) + 3\delta g(X, Y)),
$$

(whose leading coefficient $C(1,0) = \frac{1}{2}(U + 3a\delta)$)

The Cardano invariant (continued)

From these we may form the *Cardano covariant* in *L*[*X*, *Y*]

$$
C(X,Y)=\frac{1}{2}(G(X,Y)+3\delta g(X,Y)),
$$

(whose leading coefficient $C(1,0) = \frac{1}{2}(U + 3a\delta)$) and the covariant syzygy [\(2\)](#page-13-0) can be written as

$$
N_{L/K}(C(X,Y)) = H(X,Y)^3.
$$

The Cardano invariant (continued)

From these we may form the *Cardano covariant* in *L*[*X*, *Y*]

$$
C(X,Y)=\frac{1}{2}(G(X,Y)+3\delta g(X,Y)),
$$

(whose leading coefficient $C(1,0) = \frac{1}{2}(U + 3a\delta)$) and the covariant syzygy [\(2\)](#page-13-0) can be written as

$$
N_{L/K}(C(X,Y)) = H(X,Y)^3.
$$

The general definition of the Cardano invariant in *L* [∗]/*L* ∗3 is *any* specialization $C(x, y)$ with $x, y \in K$ such that $H(x, y) \neq 0$. This lies in the kernel of the norm:

$$
z(g) \in (L^*/L^{*3})_{N=1} := \ker(L^*/L^{*3} \to K^*/K^{*3}).
$$

The Cardano invariant as a fingerprint for cubics

Our first main theorem for cubics may be summarised is:

The Cardano group $(L^*/L^{*3})_{N=1}$ *exactly parametrises* the SL(2, *K*)-orbits on $B_3(K; \Delta)$.

The Cardano invariant as a fingerprint for cubics

Our first main theorem for cubics may be summarised is:

The Cardano group $(L^*/L^{*3})_{N=1}$ *exactly parametrises* the $SL(2, K)$ -orbits on $B_3(K; \Delta)$.

Details follow shortly, after we make a couple of digressions. . .

Why "Cardano" invariant?

Cardano's formula² for the roots of the cubic $g(X, 1) \in K[X]$ is simply

$$
x = -(b + \sqrt[3]{z} + P/\sqrt[3]{z})/3a,
$$

where $z = (U + 3a\delta)/2$ and $\delta =$ √ −3∆.

²Gerolamo Cardano (1501–1576)

Why "Cardano" invariant?

Cardano's formula² for the roots of the cubic $g(X, 1) \in K[X]$ is simply

$$
x = -(b + \sqrt[3]{z} + P/\sqrt[3]{z})/3a,
$$

where $z = (U + 3a\delta)/2$ and $\delta =$ √ −3∆.

From this we may guess that *g* has a root in *K* if and only if the Cardano invariant is a cube, i.e., trivial in L^*/L^{*3} , which is true: if $w = \sqrt[3]{z} \in L^*$, then $w\overline{w} = P$, and the formula is

$$
x = -(b + w + \overline{w})/3a \in K.
$$

²Gerolamo Cardano (1501–1576)

Digression: how to write down cubic extensions

We know that quadratic extensions of *K* all have the form $K(\sqrt{a})$ with $a \in K^*$ non-square, so they are parametrized by the nontrivial elements of the group $K^*/K^{*2}.$

Digression: how to write down cubic extensions

We know that quadratic extensions of *K* all have the form √ $K(\sqrt{a})$ with $a \in K^*$ non-square, so they are parametrized by the nontrivial elements of the group $K^*/K^{*2}.$

Cubics do *not* all have the form $K(\sqrt[3]{a})$ with $a \in K^*/K^{*3}$ —these all have discriminant of the form −3 times a square. Instead, we may construct *all* cubic extensions of *K*, uniquely, as follows.

Digression: how to write down cubic extensions

We know that quadratic extensions of *K* all have the form $K(\sqrt{a})$ with $a \in K^*$ non-square, so they are parametrized by the nontrivial elements of the group $K^*/K^{*2}.$

Cubics do *not* all have the form $K(\sqrt[3]{a})$ with $a \in K^*/K^{*3}$ —these all have discriminant of the form −3 times a square. Instead, we may construct *all* cubic extensions of *K*, uniquely, as follows.

Fix $\Delta \in K^*/K^{*2}$ and define $L = K(\sqrt{k})$ (-3Δ) as above. To each $z \in (L^*/L^{*3})_{N=1}$ let $\mathrm{N}_{L/K}(z) = P^3$ and $\mathrm{Tr}(z) = U;$ then the cubic $f_z(X)=X^3-3PX-U$ has discriminant Δ (modulo squares), is irreducible if and only if *z* is not a cube, and every cubic extension of *K* arises uniquely in this way (except $f_z = f_{\overline{z}}$).

Cubic equivalence via the Cardano invariant

Theorem (A)

Let K be any field with $char(K) \neq 2, 3$ *, let* $\Delta \in K^*$ *,* $\mathcal{L} = K[X]/(X^2+3\Delta)$, and let $z\colon \mathcal{B}_3(K;\Delta) \to L^*/L^{*3}$ be the *Cardano invariant map.*

1.
$$
z(g) \in (L^*/L^{*3})_{N=1}
$$
 for all $g \in B_3(K; \Delta)$;

2. $z(g) = 1$ *if and only if g is reducible over K;*

- 3. $g_1, g_2 \in B_3(K; \Delta)$ *are* SL(2, *K*)-equivalent if and only if $z(\varrho_1) = z(\varrho_2)$;
- 4. $g_1, g_2 \in B_3(K; \Delta)$ *are* GL(2, K)-equivalent if and only if $z(g_1) = z(g_2)^{\pm 1}$ (equivalently, $z(g_1)$ and $z(g_2)$ generate the same subgroup of L^*/L^{*3});
- 5. *z induces bijections between the* SL(2, *K*)*-orbits on* $\mathcal{B}_3(K; \Delta)$ and the Cardano group $(L^*/L^{*3})_{N=1}$, and *between the* GL(2, *K*)*-orbits and its cyclic subgroups.*

So far we have shown how to test equivalence of two cubics $g_1, g_2 \in B_3(K; \Delta)$, in a rather inconvenient way: test whether two elements of the quadratic resolvent algebra *L* are the same modulo cubes.

So far we have shown how to test equivalence of two cubics $g_1, g_2 \in B_3(K; \Delta)$, in a rather inconvenient way: test whether two elements of the quadratic resolvent algebra *L* are the same modulo cubes.

We would prefer a method which only uses arithmetic in the base field *K*, and we would also like to find a transforming matrix M with $g_1^M = g_2$ if the test returns "yes". Our second result on cubics achieves this.

So far we have shown how to test equivalence of two cubics $g_1, g_2 \in B_3(K; \Delta)$, in a rather inconvenient way: test whether two elements of the quadratic resolvent algebra *L* are the same modulo cubes.

We would prefer a method which only uses arithmetic in the base field *K*, and we would also like to find a transforming matrix M with $g_1^M = g_2$ if the test returns "yes". Our second result on cubics achieves this.

We know that $g_1^M = g_2$ with $M \in SL(2, K)$ iff $z = z(g_1)/z(g_2)$ is a cube in *L* ∗ . But *z* is the Cardano invariant of a third cubic in $B_3(K; \Delta)$; hence g_1 and g_2 are equivalent iff a *third* cubic g (with the same discriminant) has a root.

So far we have shown how to test equivalence of two cubics $g_1, g_2 \in B_3(K; \Delta)$, in a rather inconvenient way: test whether two elements of the quadratic resolvent algebra *L* are the same modulo cubes.

We would prefer a method which only uses arithmetic in the base field *K*, and we would also like to find a transforming matrix M with $g_1^M = g_2$ if the test returns "yes". Our second result on cubics achieves this.

We know that $g_1^M = g_2$ with $M \in SL(2, K)$ iff $z = z(g_1)/z(g_2)$ is a cube in *L* ∗ . But *z* is the Cardano invariant of a third cubic in $B_3(K; \Delta)$; hence g_1 and g_2 are equivalent iff a *third* cubic g (with the same discriminant) has a root.

Explicitly, the third cubic is (at least when $P_1P_2 \neq 0$)

$$
f(X) = 16X^3 - 12P_1P_2X - (U_1U_2 + 27a_1a_2\Delta).
$$

Can we use this to find *M*?

Explicit equivalence - the bi-covariant

The cubic $f(X)$ on the previous page is related (by a simple transform and homogenization) to the cubic form

$$
B(X, Y) = U_1 g_2(X, Y) - a_1 G_2(X, Y)
$$

= $G_1(1, 0) g_2(X, Y) - g_1(1, 0) G_2(X, Y),$

where $a_i, b_i, \ldots, P_i, U_i$ are the coefficients/covariants of $g_1, g_2.$

Explicit equivalence - the bi-covariant

The cubic $f(X)$ on the previous page is related (by a simple transform and homogenization) to the cubic form

$$
B(X, Y) = U_1 g_2(X, Y) - a_1 G_2(X, Y)
$$

= $G_1(1, 0) g_2(X, Y) - g_1(1, 0) G_2(X, Y),$

where $a_i, b_i, \ldots, P_i, U_i$ are the coefficients/covariants of $g_1, g_2.$ To avoid handling special cases, we replace the specialization $(1, 0)$ with two new variables and define

 $B_{g_1, g_2}(X_1, Y_1, X_2, Y_2) = G_1(X_1, Y_1)g_2(X_2, Y_2) - g_1(X_1, Y_1)G_2(X_2, Y_2).$

This is bi-homogeneous of degree (3, 3) and is bi-covariant (homogeneous and covariant in each set of variables separately).

Equivalence via bi-linear factors of the bi-covariant

It is not hard to see that

 $X_1Y_2 - X_2Y_1 \mid B_{g_1,g_2}(X_1,Y_1,X_2,Y_2) \iff g_2 = \pm g_1.$

Equivalence via bi-linear factors of the bi-covariant

It is not hard to see that

$$
X_1Y_2 - X_2Y_1 \mid B_{g_1,g_2}(X_1,Y_1,X_2,Y_2) \iff g_2 = \pm g_1.
$$

Playing around with the bi-covariance of B_{g_1,g_2} , one finds that bi-linear factors of *Bg*1,*g*² (if any) all come from matrices *M* transforming g_1 to g_2 .

Equivalence via bi-linear factors of the bi-covariant

It is not hard to see that

$$
X_1Y_2 - X_2Y_1 \mid B_{g_1,g_2}(X_1,Y_1,X_2,Y_2) \iff g_2 = \pm g_1.
$$

Playing around with the bi-covariance of B_{g_1,g_2} , one finds that bi-linear factors of *Bg*1,*g*² (if any) all come from matrices *M* transforming g_1 to g_2 .

For
$$
M = \begin{pmatrix} r & s \\ t & u \end{pmatrix}
$$
 define L_M to be the bi-linear form

$$
L_M = -sX_1X_2 + rX_1Y_2 - uY_1X_2 + tY_1Y_2.
$$

Lemma

If
$$
L_M \mid B_{g_1, g_2}
$$
 then $\det(M) \in K^{*2}$ and $g_2^M = \pm \det(M)^{1/2} g_1$.

Explicit equivalence - conclusion

Theorem (B)

Let $g_1, g_2 \in B_3(K; \Delta)$ *. Then* g_1 *and* g_2 *are* SL(2, *K*)*-equivalent if and only if* B_{g_1,g_2} *has a bilinear factor in* $K[X_1, Y_1, X_2, Y_2]$ *, and every bilinear factor of* B_{g_1,g_2} *has the form* L_M *with* $M \in SL(2, K)$ *, where* $g_1 = g_2^M$.

Explicit equivalence - conclusion

Theorem (B)

 $Let g_1, g_2 \in B_3(K; \Delta)$. Then g_1 and g_2 are $SL(2, K)$ -equivalent if *and only if* B_{g_1,g_2} *has a bilinear factor in* $K[X_1, Y_1, X_2, Y_2]$ *, and every bilinear factor of* B_{g_1,g_2} *has the form* L_M *with* $M \in SL(2, K)$ *, where* $g_1 = g_2^M$.

We can similarly detect transforming matrices with determinant −1 using bi-linear factors of

 $g_2(X_2, Y_2)G_1(X_1, Y_1) + G_2(X_2, Y_2)g_1(X_1, Y_1).$

Explicit equivalence - conclusion

Theorem (B)

 $Let g_1, g_2 \in B_3(K; \Delta)$. Then g_1 and g_2 are $SL(2, K)$ -equivalent if *and only if* B_{g_1,g_2} *has a bilinear factor in* $K[X_1, Y_1, X_2, Y_2]$ *, and every bilinear factor of* B_{g_1,g_2} *has the form* L_M *with* $M \in SL(2, K)$ *, where* $g_1 = g_2^M$.

We can similarly detect transforming matrices with determinant −1 using bi-linear factors of

$$
g_2(X_2, Y_2)G_1(X_1, Y_1)+G_2(X_2, Y_2)g_1(X_1, Y_1).
$$

This completes our discussion of cubics.

Quartics

The story for quartics is similar: Cremona & Fisher (2009).

▶ *^g* [∈] ^B4(*K*) has classical invariants *^I*, *^J* as well as [∆], with

$$
\Delta = 4I^3 - J^2.
$$

▶ There is a resolvent *cubic algebra*

$$
L = K[T]/(T^3 - 3IT + J) = K[\varphi].
$$

▶ The algebraic invariant $z(g) = \frac{1}{3}(4a\varphi + p) \in L^*$ with $p = 3b^2 - 8ac$, the leading coefficient of the Hessian covariant $H(g)$, has square norm:

$$
N_{L/K}(z) = r^2,
$$

where $r = b^3 + 8a^2d - 4abc$ is the leading coefficient of a sextic covariant *G*(*g*).

Quartic equivalence via the algebraic invariant

Just as for cubics we can give a better definition of the algebraic invariant $z(g)$ as any invertible value of the algebraic covariant

$$
\frac{1}{3}(4\varphi g(X,Y) + H(X,Y))
$$

(which has norm $G(X, Y)^2$). Then

$$
\blacktriangleright
$$
 $z(g)$ is well-defined in L^*/L^{*2} ;

$$
\blacktriangleright z(g) \in \ker(\mathrm{N}_{L/K}: L^*/L^{*2} \to K^*/K^{*2});
$$

- \blacktriangleright $z(g) = 1$ iff g has a linear factor;
- \blacktriangleright $z(g_1) = z(g_2)$ iff g_1, g_2 are $GL(2, K)$ -equivalent.

Quartic equivalence via the algebraic invariant

Just as for cubics we can give a better definition of the algebraic invariant $z(g)$ as any invertible value of the algebraic covariant

$$
\frac{1}{3}(4\varphi g(X,Y) + H(X,Y))
$$

(which has norm $G(X, Y)^2$). Then

$$
\blacktriangleright
$$
 $z(g)$ is well-defined in L^*/L^{*2} ;

$$
\blacktriangleright z(g) \in \ker(\mathrm{N}_{L/K}: L^*/L^{*2} \to K^*/K^{*2});
$$

 \blacktriangleright $z(g) = 1$ iff g has a linear factor;

$$
\blacktriangleright z(g_1) = z(g_2) \text{ iff } g_1, g_2 \text{ are } GL(2, K)\text{-equivariant.}
$$

NB The image of *z*() is a *subset* (not a subgroup!) of $\ker (\mathrm{N}_{L/K} : L^*/L^{*2} \to K^*/K^{*2}),$ as it is *linear* in $\varphi.$

Construction of quartics via their cubic resolvents

We can also construct all quartics $g(X)$ with invariants *I*, *J* by forming the cubic resolvent algebra $L = K[T]/(T^3 - 3IT + J) = K[\varphi],$ taking $z \in \ker(\mathrm{N}_{L/K}: L^*/L^{*2} \rightarrow K^*/K^{*2})$ with minimal polynomial

$$
Z^3 - pZ^2 + qZ - r^2,
$$

and setting $g(X) = (X^2 - p)^2 - 8rX - 4q$.

Explicit equivalence of quartics via bi-covariants

If $g_1, g_2 \in B_4(K)$ have the same invariants *I*, *J*, let their Hessian covariants be $H_1.H_2$. Form the bi-covariant

 $F(X_1, Y_1, X_2, Y_2) = g_1(X_1, Y_1)H_2(X_2, Y_2) - g_2(X_2, Y_2)H_1(X_1, Y_1),$

which is homogeneous of bi-degree (4, 4). Then

- \blacktriangleright *g*₁, *g*₂ are GL(2, *K*)-equivalent iff $F(X_1, Y_1, X_2, Y_2)$ has a bi-linear factor;
- \blacktriangleright the coefficients of such a factor give the entries in a matrix *M* with $g_2 = g_1^M$.

See Cremona & Fisher (2009) for details.

Elliptic curve connections 1: cubics

Mordell elliptic curves are $E_k: Y^2 = X^3 + k$; there is a 3-isogeny $\phi: E_k \rightarrow E_{-27k}$. Using this and its dual $\hat{\phi}$ one can carry out 3-isogeny descent on *E^k* and obtain information about its rank.

Elliptic curve connections 1: cubics

Mordell elliptic curves are $E_k: Y^2 = X^3 + k$; there is a 3-isogeny ϕ : E_k → E_{-27k} . Using this and its dual $\hat{\phi}$ one can carry out 3-isogeny descent on *E^k* and obtain information about its rank. There is a bijection (due to Bhargava) between $H^1(G_K, E_{-27k}[\hat{\phi}])$ and the set of $SL(2, K)$ -orbits on $B_3(K; -108k)$: elements of the former are represented by genus one covering curves C_g : $Z^3 = g(X, Y)$ with $g \in B_3(K; -108k)$, and the covariant syzygy gives the covering map $C_g \to E_k$ since

$$
(x,y,z)\in C_g(K)\longrightarrow \left(\frac{H(x,y)}{(3z)^2},\frac{G(x,y)}{2((3z)^3)}\right)\in E_k(K).
$$

Elliptic curve connections 1: cubics

Mordell elliptic curves are $E_k: Y^2 = X^3 + k$; there is a 3-isogeny ϕ : E_k → E_{-27k} . Using this and its dual $\hat{\phi}$ one can carry out 3-isogeny descent on *E^k* and obtain information about its rank. There is a bijection (due to Bhargava) between $H^1(G_K, E_{-27k}[\hat{\phi}])$ and the set of $SL(2, K)$ -orbits on $B_3(K; -108k)$: elements of the former are represented by genus one covering curves C_g : $Z^3 = g(X, Y)$ with $g \in B_3(K; -108k)$, and the covariant syzygy gives the covering map $C_g \to E_k$ since

$$
(x,y,z)\in C_g(K)\longrightarrow \left(\frac{H(x,y)}{(3z)^2},\frac{G(x,y)}{2((3z)^3)}\right)\in E_k(K).
$$

Hence, enumerating binary cubics up to equivalence gives information about the size of the 3-Selmer group of these (special) elliptic curves.

Elliptic curve connections 2: quartics

The connection between quartics and their in/covariants appeared in the papers of Birch and Swinnerton-Dyer in the 1960s, and a more detailed description appeared in my 2001 paper "Classical invariants and 2-descent on elliptic curves" and the 2009 joint paper with Tom Fisher already mentioned.

Elliptic curve connections 2: quartics

The connection between quartics and their in/covariants appeared in the papers of Birch and Swinnerton-Dyer in the 1960s, and a more detailed description appeared in my 2001 paper "Classical invariants and 2-descent on elliptic curves" and the 2009 joint paper with Tom Fisher already mentioned. Quartics $g \in B_4(\Delta)$ with fixed invariants *I*, *J* define genus one 2-covering curves $C_g:\; Y^2=g(X,1)$ of the elliptic curve $E_{I,J}:~Y^2=X^3-27IX-27J.$ Again the covariant syzygy gives the 2-covering map $C_g \rightarrow E_{IJ}$:

$$
(x,y)\in C_g(K)\longrightarrow \left(\frac{3H(x,1)}{4y^2},\frac{27G(x,1)}{8y^3}\right)\in E_{I,J}(K).
$$