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Overview

1. Introduction: notation/definitions, statement of the problem
2. Warm-up: quadratics
3. Cubics: the Cardano covariant “fingerprint”
4. Cubics: using the bicovariant to recover the transform
5. Quartics
6. Elliptic curve applications

See http://arxiv.org/abs/2212.02120 for binary
cubics, and
http://dx.doi.org/10.1016/j.jsc.2008.09.004
(joint with Tom Fisher) for binary quartics.

http://arxiv.org/abs/2212.02120
http://dx.doi.org/10.1016/j.jsc.2008.09.004


Notations and definitions
▶ K is a field with char(K) ̸= 2, 3;
▶ Bn(K) is the set of degree n binary forms g(X,Y) ∈ K[X,Y]

(homogeneous of degree n, coefficients in K);
▶ For g ∈ Bn(K), ∆ = disc(g) is homogeneous of

degree 2n − 2 in the coefficients of g;
▶ for each ∆ ∈ K∗, Bn(K; ∆) = {g ∈ Bn(K) | disc(g) = ∆}.
▶ GL(2,K) acts on Bn(K): we will use a twisted action where

M =

(
r s
t u

)
∈ GL(2,K) takes g to gM:

gM(X,Y) = det(M)−1g(rX+ tY, sX+uY) = det(M)−1g(X′,Y ′),

where (X′ Y ′) = (X Y)M.
▶ disc(gM) = det(M)(n−1)(n−2) disc(g).



Statement of the problem

Fix K and ∆ ∈ K∗. Let g1, g2 ∈ Bn(K; ∆).
▶ Are g1 and g2 equivalent under the action of GL(2,K)?
▶ If so, find M ∈ GL(2,K) with g2 = gM

1 .

We may also ask the same question replacing GL(2,K) with
SL(2,K). In any case, for the discriminant to preserved by the
action so we must have det(M)(n−1)(n−2) = 1.
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Quadratics

The discriminant of g(X,Y) = aX2 + bXY + cY2 is ∆ = b2 − 4ac,
which is preserved by the twisted GL(2,K)-action.

If a ̸= 0 then M =

(
2 0
−b 2a

)
with det(M) = 4a ̸= 0 takes g to

gM(X,Y) = X2 − 1
4∆Y2.

If a = 0 then ∆ = b2 and M =

(
−2(1 + bc)/b 2b

1 − bc b2

)
with

det(M) = −4b ̸= 0 also takes g to gM(X,Y) = X2 − 1
4∆Y2.

Hence all forms with the same discriminant are
GL(2,K)-equivalent, and using these explicit matrices we can
transform any one into any other one.
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Cubics

Consider binary cubic forms g ∈ B3(K; ∆).
Since disc(gM) = det(M)2 disc(g), a matrix transforming a cubic
into one with the same discriminant must have determinant ±1.

Noting that
(
−1 0
0 1

)
takes g(X,Y) to g(−X,Y), we concentrate

on SL(2,K)-equivalence.
Write g(X,Y) = aX3 + bX2Y + cXY2 + dY3 and set

P = b2 − 3ac, and U = 2b3 + 27a2d − 9abc;

these “seminvariants” satisfy the syzygy

4P3 = U2 + 27∆a2. (1)
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The quadratic resolvent and Cardano invariant

For fixed ∆ ∈ K∗ define the resolvent algebra

L = K(
√
−3∆) = K[T]/(T2 + 3∆) = K[δ],

which is a quadratic extension1 of K, with δ2 = −3∆.

To each g ∈ B3(K; ∆) we assign an element of L∗ called the
Cardano invariant. When P ̸= 0 this is given by

z(g) =
1
2
(U + 3aδ).

The syzygy (1) can then be written NL/K(z) = P3.

1L is a field, unless
√
−3∆ ∈ K, when L = K ⊕ K.
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The Cardano invariant (continued)
In the general case, the definition of z(g) is a little more
involved: one can show that for all the transforms gM of g with
P(gM) ̸= 0, the value of z(gM) is the same modulo cubes, so we
always have a well-defined map

z : B3(K; ∆) → L∗/L∗3.

In fact, P is the leading coefficient of the Hessian covariant of g,

H(X,Y) = (b2 − 3ac)X2 + (bc − 9ad)XY + (c2 − 3bd)Y2;

there is also a cubic covariant

G(X,Y) = (2b3 + 27a2d − 9abc)X3 + 3(b2c + 9abd − 6ac2)X2Y

− 3(bc2 + 9acd − 6b2d)XY2 − (2c3 + 27ad2 − 9bcd)Y3,

and these satisfy the syzygy

4H(X,Y)3 = G(X,Y)2 + 27∆g(X,Y)2. (2)
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The Cardano invariant (continued)
From these we may form the Cardano covariant in L[X,Y]

C(X,Y) =
1
2
(G(X,Y) + 3δg(X,Y)),

(whose leading coefficient C(1, 0) = 1
2(U + 3aδ))

and the
covariant syzygy (2) can be written as

NL/K(C(X,Y)) = H(X,Y)3.

The general definition of the Cardano invariant in L∗/L∗3 is any
specialization C(x, y) with x, y ∈ K such that H(x, y) ̸= 0. This
lies in the kernel of the norm:

z(g) ∈ (L∗/L∗3)N=1 := ker(L∗/L∗3 → K∗/K∗3).
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The Cardano invariant as a fingerprint for cubics

Our first main theorem for cubics may be summarised is:

The Cardano group (L∗/L∗3)N=1

exactly parametrises
the SL(2,K)-orbits on B3(K; ∆).

Details follow shortly, after we make a couple of digressions. . .



The Cardano invariant as a fingerprint for cubics

Our first main theorem for cubics may be summarised is:

The Cardano group (L∗/L∗3)N=1

exactly parametrises
the SL(2,K)-orbits on B3(K; ∆).

Details follow shortly, after we make a couple of digressions. . .



Why “Cardano” invariant?

Cardano’s formula2 for the roots of the cubic g(X, 1) ∈ K[X] is
simply

x = −(b + 3
√

z + P/ 3
√

z)/3a,

where z = (U + 3aδ)/2 and δ =
√
−3∆.

From this we may guess that g has a root in K if and only if the
Cardano invariant is a cube, i.e., trivial in L∗/L∗3, which is true:
if w = 3

√
z ∈ L∗, then ww = P, and the formula is

x = −(b + w + w)/3a ∈ K.

2Gerolamo Cardano (1501–1576)
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Digression: how to write down cubic extensions

We know that quadratic extensions of K all have the form
K(

√
a) with a ∈ K∗ non-square, so they are parametrized by the

nontrivial elements of the group K∗/K∗2.

Cubics do not all have the form K( 3
√

a) with a ∈ K∗/K∗3—these
all have discriminant of the form −3 times a square. Instead,
we may construct all cubic extensions of K, uniquely, as follows.

Fix ∆ ∈ K∗/K∗2 and define L = K(
√
−3∆) as above. To each

z ∈ (L∗/L∗3)N=1 let NL/K(z) = P3 and Tr(z) = U; then the cubic
fz(X) = X3 − 3PX − U has discriminant ∆ (modulo squares), is
irreducible if and only if z is not a cube, and every cubic
extension of K arises uniquely in this way (except fz = fz).
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Cubic equivalence via the Cardano invariant
Theorem (A)
Let K be any field with char(K) ̸= 2, 3, let ∆ ∈ K∗,
let L = K[X]/(X2 + 3∆), and let z : B3(K; ∆) → L∗/L∗3 be the
Cardano invariant map.

1. z(g) ∈ (L∗/L∗3)N=1 for all g ∈ B3(K; ∆);
2. z(g) = 1 if and only if g is reducible over K;
3. g1, g2 ∈ B3(K; ∆) are SL(2,K)-equivalent if and only if

z(g1) = z(g2);
4. g1, g2 ∈ B3(K; ∆) are GL(2,K)-equivalent if and only if

z(g1) = z(g2)
±1 (equivalently, z(g1) and z(g2) generate the

same subgroup of L∗/L∗3);
5. z induces bijections between the SL(2,K)-orbits on

B3(K; ∆) and the Cardano group (L∗/L∗3)N=1, and
between the GL(2,K)-orbits and its cyclic subgroups.



Explicit equivalence - introduction
So far we have shown how to test equivalence of two cubics
g1, g2 ∈ B3(K; ∆), in a rather inconvenient way: test whether
two elements of the quadratic resolvent algebra L are the same
modulo cubes.

We would prefer a method which only uses arithmetic in the
base field K, and we would also like to find a transforming
matrix M with gM

1 = g2 if the test returns “yes”. Our second
result on cubics achieves this.
We know that gM

1 = g2 with M ∈ SL(2,K) iff z = z(g1)/z(g2) is a
cube in L∗. But z is the Cardano invariant of a third cubic in
B3(K; ∆); hence g1 and g2 are equivalent iff a third cubic g (with
the same discriminant) has a root.
Explicitly, the third cubic is (at least when P1P2 ̸= 0)

f (X) = 16X3 − 12P1P2X − (U1U2 + 27a1a2∆).

Can we use this to find M?
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Explicit equivalence - the bi-covariant

The cubic f (X) on the previous page is related (by a simple
transform and homogenization) to the cubic form

B(X,Y) = U1g2(X,Y)− a1G2(X,Y)

= G1(1, 0)g2(X,Y)− g1(1, 0)G2(X,Y),

where ai, bi, . . . ,Pi,Ui are the coefficients/covariants of g1, g2.

To avoid handling special cases, we replace the specialization
(1, 0) with two new variables and define

Bg1,g2(X1,Y1,X2,Y2) = G1(X1,Y1)g2(X2,Y2)− g1(X1,Y1)G2(X2,Y2).

This is bi-homogeneous of degree (3, 3) and is bi-covariant
(homogeneous and covariant in each set of variables
separately).
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Equivalence via bi-linear factors of the bi-covariant
It is not hard to see that

X1Y2 − X2Y1 | Bg1,g2(X1,Y1,X2,Y2) ⇐⇒ g2 = ±g1.

Playing around with the bi-covariance of Bg1,g2 , one finds that
bi-linear factors of Bg1,g2 (if any) all come from matrices M
transforming g1 to g2.

For M =

(
r s
t u

)
define LM to be the bi-linear form

LM = −sX1X2 + rX1Y2 − uY1X2 + tY1Y2.

Lemma
If LM | Bg1,g2 then det(M) ∈ K∗2 and gM

2 = ±det(M)1/2g1.
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Explicit equivalence - conclusion

Theorem (B)
Let g1, g2 ∈ B3(K; ∆). Then g1 and g2 are SL(2,K)-equivalent if
and only if Bg1,g2 has a bilinear factor in K[X1,Y1,X2,Y2], and
every bilinear factor of Bg1,g2 has the form LM with M ∈ SL(2,K),
where g1 = gM

2 .

We can similarly detect transforming matrices with determinant
−1 using bi-linear factors of

g2(X2,Y2)G1(X1,Y1) + G2(X2,Y2)g1(X1,Y1).

This completes our discussion of cubics.
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2 .

We can similarly detect transforming matrices with determinant
−1 using bi-linear factors of

g2(X2,Y2)G1(X1,Y1) + G2(X2,Y2)g1(X1,Y1).

This completes our discussion of cubics.
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Quartics
The story for quartics is similar: Cremona & Fisher (2009).
▶ g ∈ B4(K) has classical invariants I, J as well as ∆, with

∆ = 4I3 − J2.

▶ There is a resolvent cubic algebra

L = K[T]/(T3 − 3IT + J) = K[φ].

▶ The algebraic invariant z(g) = 1
3(4aφ+ p) ∈ L∗ with

p = 3b2 − 8ac, the leading coefficient of the Hessian
covariant H(g), has square norm:

NL/K(z) = r2,

where r = b3 + 8a2d − 4abc is the leading coefficient of a
sextic covariant G(g).



Quartic equivalence via the algebraic invariant

Just as for cubics we can give a better definition of the algebraic
invariant z(g) as any invertible value of the algebraic covariant

1
3
(4φg(X,Y) + H(X,Y))

(which has norm G(X,Y)2). Then
▶ z(g) is well-defined in L∗/L∗2;
▶ z(g) ∈ ker(NL/K : L∗/L∗2 → K∗/K∗2);
▶ z(g) = 1 iff g has a linear factor;
▶ z(g1) = z(g2) iff g1, g2 are GL(2,K)-equivalent.

NB The image of z() is a subset (not a subgroup!) of
ker(NL/K : L∗/L∗2 → K∗/K∗2), as it is linear in φ.
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Construction of quartics via their cubic resolvents

We can also construct all quartics g(X) with invariants I, J by
forming the cubic resolvent algebra
L = K[T]/(T3 − 3IT + J) = K[φ], taking
z ∈ ker(NL/K : L∗/L∗2 → K∗/K∗2) with minimal polynomial

Z3 − pZ2 + qZ − r2,

and setting g(X) = (X2 − p)2 − 8rX − 4q.



Explicit equivalence of quartics via bi-covariants

If g1, g2 ∈ B4(K) have the same invariants I, J, let their Hessian
covariants be H1.H2.
Form the bi-covariant

F(X1,Y1,X2,Y2) = g1(X1,Y1)H2(X2,Y2)− g2(X2,Y2)H1(X1,Y1),

which is homogeneous of bi-degree (4, 4). Then
▶ g1, g2 are GL(2,K)-equivalent iff F(X1,Y1,X2,Y2) has a

bi-linear factor;
▶ the coefficients of such a factor give the entries in a

matrix M with g2 = gM
1 .

See Cremona & Fisher (2009) for details.



Elliptic curve connections 1: cubics

Mordell elliptic curves are Ek : Y2 = X3 + k; there is a 3-isogeny
ϕ : Ek → E−27k. Using this and its dual ϕ̂ one can carry out
3-isogeny descent on Ek and obtain information about its rank.

There is a bijection (due to Bhargava) between H1(GK ,E−27k[ϕ̂])
and the set of SL(2,K)-orbits on B3(K;−108k): elements of the
former are represented by genus one covering curves
Cg : Z3 = g(X,Y) with g ∈ B3(K;−108k), and the covariant
syzygy gives the covering map Cg → Ek since

(x, y, z) ∈ Cg(K) −→
(

H(x, y)
(3z)2 ,

G(x, y)
2((3z)3)

)
∈ Ek(K).

Hence, enumerating binary cubics up to equivalence gives
information about the size of the 3-Selmer group of these
(special) elliptic curves.
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Elliptic curve connections 2: quartics

The connection between quartics and their in/covariants
appeared in the papers of Birch and Swinnerton-Dyer in the
1960s, and a more detailed description appeared in my 2001
paper “Classical invariants and 2-descent on elliptic curves”
and the 2009 joint paper with Tom Fisher already mentioned.

Quartics g ∈ B4(∆) with fixed invariants I, J define genus one
2-covering curves Cg : Y2 = g(X, 1) of the elliptic curve
EI,J : Y2 = X3 − 27IX − 27J. Again the covariant syzygy gives
the 2-covering map Cg → EI,J:

(x, y) ∈ Cg(K) −→
(

3H(x, 1)
4y2 ,

27G(x, 1)
8y3

)
∈ EI,J(K).
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