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Let n be a positive integer, G be a multiplicative group and let

v=(1,...,vp) bein G". We say that v is multiplicatively
dependent if there is a non-zero vector k = (kq, ..., kp) € Z" for
which

uk:yf---uﬁ”: . (0.1)




We denote by M,(G) the set of multiplicatively dependent
vectors in G".

For instance, the set M,(C*) of multiplicatively dependent
vectors in (C*)" is of Lebesgue measure zero, since it is a
countable union of sets of measure zero. Further, if we fix an
exponent vector K the subvariety of (C*)" determined by (0.1) is
an algebraic subgroup of (C*)".




We shall be interested in counting the number of multiplicatively
dependent n-tuples whose coordinates are algebraic numbers
of fixed degree, or within a fixed number field, and bounded
height.

Equivalently we shall count n-tuples of algebraic numbers in a
fixed algebraic number field, or of fixed degree, and given
height which occur in some proper algebraic subgroup of the
algebraic group G, where G, is the multiplicative group of an
algebraic closure of Q.




For any algebraic number «, let
f(X) = agx?+ -+ ajx + a

be the minimal polynomial of « over the integers Z (so with
content 1 and positive leading coefficient). Suppose that f
factors as
f(x) = ag(x — 1) - (x — aq)
over the complex numbers C. The naive height Hy(«) of «vis
given by
Ho(Oé) = max{’ad‘v SRR |a1 ’7 ‘30’}7

and H(«), the height of a, also known as the absolute Weil
height of «, is defined by

d
H(a) = (ag [ ] max{1, asl})"/°.

i=1




Let K be a number field of degree d (over Q). We use the
following standard notation:

e ry and r» for the number of real and pairs of complex
conjugate embeddings of K, respectively, and put
r=n+nrn-1,

e D, h, R and (k for the discriminant, class number, regulator
and Dedekind zeta function of K, respectively;

e w for the number of roots of unity in K.

Note that r is exactly the rank of the unit group of the ring of
algebraic integers of K. As usual, let ((s) be the Riemann zeta
function.




For any real number x, let [ x] denote the smallest integer
greater than or equal to x, and let | x| denote the greatest
integer less than or equal to x.

For a finite set S we use |S| to denote its cardinality.




Let K be a number field of degree d. Denote the set of
algebraic integers of K of height at most H by Bx(H) and the
set of algebraic numbers of K of height at most H by Bj.(H).
Set

Bk(H) = [Bk(H)|; Bx(H) = [Bk(H)|.




out 2n (2r)2d"

Widmer(2016) proved that

Bk (H) = Cy(K)H%(log H)" + O(H%(log H)"1). (0.2)




For any positive integer n, we denote by L, x(H) the number of
multiplicatively dependent n-tuples whose coordinates are
algebraic integers of height at most H, and we denote by

L» (H) the number of multiplicatively dependent n-tuples
whose coordinates are algebraic numbers of height at most H.

Put
n(n+1)

CS(”a K) = )

wC; (K)"".
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THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let K be a number field of degree d over Q and let n be an
integer with n > 2. We have

Ln,K(H) = Cz(n, K)Hd(’7*1)(|og H)r(nf1)

L0 <Hd(nf1)(|og H)r(nq)q) ; (0.3)

if furthermore K = Q or is an imaginary quadratic field, we have

Lnk(H) = Cs(n, K)HY =D 4 O (Hd(”*S/"‘)) . (0.4)




Define o2n 2 )2r22th
iy
Co(K) =

| Dlwck(2)




Schanuel proved in 1979 that

Bi(H) = Co(K)H?? + O(H??1(log H)*(9)), (0.5)

where o(1) =1 and o(d) = 0 for d > 1.




We estimate L}, ,(H) next. Put

Cs(n, K) = miPwCy(K)" 1.




THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let K be a number field of degree d, and let n be an integer
with n > 2. Then, we have

ni(H) = Ca(n, K)HZI™D + O(H2A(=D~1g(H)),  (0.6)

where
log H ifd=1andn=2
g(H) =< exp(clogH/loglogH) ifd=1andn>2
1 ifd>1andn> 2,

and c is a positive number depending only on n.




The following notion plays a crucial role in our argument.

Let Q be an algebraic closure of the rational numbers Q. For
each v in (Q")", we define s, the multiplicative rank of v, in the
following way. If v has a coordinate which is a root of unity, we
put s = 0; otherwise let s be the largest integer with1 < s <n
for which any s coordinates of v form a multiplicatively
independent vector. Notice that

0<s<n-1, (0.7)

whenever v is multiplicatively dependent.




We now outline the strategy of the proofs. Given a number field
K, we define L, k s(H) and L},  ((H) to be the number of
multiplicatively dependent n-tuples of multiplicative rank s
whose coordinates are algebraic integers in Bx(H) and

algebraic numbers in Bj(H) respectively. It follows from (0.7)
that
{ Lnk(H) = Lnko(H) + -+ Lnk,n—1(H)

L k(H) =L} o(H) + -+ L} n 1 (H).

(0.8)

The main term in (0.3) comes from the contributions of

Lk o(H) and Ly k,1(H) in (0.8), and the main term in our
second theorem comes from the contributions of L7, , ,(H) and
L} k 1(H) in (0.8). To prove our results we make use of (0.8)
and the following result.




THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let K be a number field of degree d. Let n and s be integers
withn > 2 and 0 < s < n— 1. Then, there exist positive
numbers ¢; and ¢, which depend on n and K, such that

Lok s(H) < HA(=1)=d([(s+1)/21=1) exp( ¢y log H/ log log H) (0.9)
and

1k s(H) < H2AO=D=d+0/21-0) g5y log HJ log log H).
(0.10)




The next result shows that if algebraic numbers a4, ..., an are
multiplicatively dependent, then we can find a relation where
the exponents are not too large. Such a result has found
application in transcendence theory.

LEMMA

Letn> 2, and let oy, . ..,an be multiplicatively dependent
non-zero algebraic numbers of degree at most d and height at
most H. Then, there is a positive number c, which depends
only on n and d, and there are rational integers kK, . . . , kn, not
all zero, such that
ki ok — o

oYy ap’ =

and

ki| < c(log H)"1.
1‘22%' il < c(log H)

This follows from a result of van der Poorten and Loxton.




Let x and y be positive real numbers with y larger than 2, and
let ¢(x, y) denote the number of positive integers not exceeding
X which contain no prime factors greater than y. Put

Z= (Iog (1 + 4 >> log X + (log <1 + Iogx>> 4
log x log y y log y

and

u = (log x)/(log y)-
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LEMMA

For2 < y < x, we have

(X, y)
= exp (Z (1+ O((log y)™") + O((loglog x)™") + O((u+ 7)) ).

This is a result of N.G. de Bruijn from 1966.




Let d be a positive integer, and let Ay (H), respectively A%(H),
be the set of algebraic integers of degree d (over Q),
respectively algebraic numbers of degree d, of height at most
H. We set

Ad(H) = [Aa(H)|; Ay(H) = [Ag(H)].




Pu [(a-1)/2]
2 g(z))0-2-1
_ d
Cs(d) = d2 ,H R
and -
a2d D (g1 1) 2))0-2

(2 + )2+




It follows from the work of Barroero from 2014 that

Aq(H) = Cs(d)H" + O (Hd(d_1)(log H)”(d)) , (0.11)

where p(2) = 1 and p(d) = 0 for any d # 2.




Masser and Vaaler showed in 2008 that

A4(H) = Co(d)HI@H) 1+ 0 (Hd2(|og H)Wd)) . (0.12)

where 9(1) = 9(2) =1 and J(d) = 0 for any d > 3.




For any positive integer n, we denote by M, 4(H) the number of
multiplicatively dependent n-tuples whose coordinates are
algebraic integers in Ay (H), and we denote by M ,(H) the
number of multiplicatively dependent n-tuples whose
coordinates are algebraic numbers in A% (H).




For each positive integer d, we define wy(d) to be the number
of roots of unity of degree d. Let ¢ denote Euler’s totient
function. Since ¢(k) > k/ loglog k for any integer k > 3, it
follows that

wo(d) < d?loglogd, (0.13)

where d > 3 and the implied constant is absolute. We remark
that wy(d) can be zero, such as for an odd integer d > 1.




Given positive integers n and d, we define C7(n, d) and
Cs(n,d) as

C7(n,d) = (nwp(d) + n(n— 1)) Cs(d)""

and

Ca(n, d) = (nwo(d) +2n(n — 1)) Co(a)™".




THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let d and n be positive integers with n > 2. Then, the following
hold.

(1) We have
Myg(H) = C7(n, d)H=(=1 1 0 (Hdz("*”*d/?) . (0.14)
furthermore if d = 2 or d is odd, we have

Mya(H) = Cr(n, d)H" (")
+0 (Hdz("_1)_d exp(cq log H/ log log H))
(0.15)




THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let d and n be positive integers with n > 2. Then, the following
hold.

(11) We have

% 4(H) = Ca(n, d)HAE+N(-1) 1 o (Hd(d+1)(n—1)—d/2 log H) ;

(0.16)
furthermore if d = 2 or d is odd, we have

% 4(H) = Cg(n, d)HIE@+N(=1)
+ O (Hd(d+1)(n—1)—d exp(clog H/ log log H))
(0.17)

and where c is a positive number which depends only on
nandd.
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How are multiplicatively dependent vectors distributed?

What is the distribution of the elements of M,(S) when Siis a
subset of the real numbers R or the complex numbers C with
number theoretic interest?




Let K be a number field, which we always identify with one of
its models, that is, K = Q(«) for some algebraic number a.
Let Ok denote the ring of integers of K. We study the
distribution of M,(K) and M;(Ok) in R" and also in C".




We say that a subset S of a ring R is closed under powering if
for any o in S we also have o™ in S for every non-zero integer
m.




THEOREM (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Letn > 2 and let S be a dense subset of R which is closed
under powering. Then M;(S) is dense in R".




Since the rationals are dense in R and closed under powering,
we deduce the following result.

COROLLARY (KONYAGIN, SHA, SHPARLINSKI, S., 2021) J

Letn> 2. Then M,(Q) is dense in R".




If Ox NR # Z, then O NR is easily seen to be dense in R, and
since it is closed under powering we have the following result.

COROLLARY (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Letn > 2, and let K be a number field. If Ox N R # Z, then
Mn(Ok NR) is dense inR".




We next consider the situation when R is replaced by C.

THEOREM (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Letn > 2 and let S be a dense subset of C which is closed
under powering. Then Mp(S) is dense in C".




The condition that S be closed under powering can not be
removed from the previous two theorems. For example, let S
be the set of all algebraic numbers of the form (p/q with ¢ a
root of unity and with p and g distinct primes. Then S is dense
in C, but M,(8S) is not dense in C” for any n > 2.




COROLLARY (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let n > 2, and let K be a number field. If K is not contained in
R, then M, (K) is dense in C".

Further if K is a number field of degree at least 3 which is not
contained in R, then O is dense in C and we have the
following result.

COROLLARY (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Letn> 2, and let K be a number field. If [K : Q] > 3 and K is
not contained in R, then My (Ok) is dense in C".




To study the cases of M,(Z), which is not dense in R”, and of
Mp(Ok) when K is an imaginary quadratic field, which is not
dense in C", we introduce a refinement of the notion of the
covering radius of a set .

40/53



||x|| denotes the Euclidean norm of x = (xq,...,Xxn) € R”, that
is,
X = /X2 + ...+ x2.

For H > 1 we define

pn(H;Z) = sup inf ||x—v]|.
AHiZ)= sup ot X V]
lIx|[<H




We must have
pn(H;Z) > ci(n)H'/". (0.18)

If the points of M (Z) were evenly distributed, then the lower
bound above would be sharp.




THEOREM (KONYAGIN, SHA, SHPARLINSKI, S., 2021)
For H > 1, we have
H < po(H;Z) < H,

and forn >3

—1
Co(n) _ (log log H)"
H/(log H) < pn(H;Z2) < H—(Iog )z

where Cy(n) is a positive number which is effectively
computable in terms of n.




For H > 1 and K an imaginary quadratic field, we put

H; Ok) = sup inf X —v|.
pnlHiO) = sup inf x|
Ix|I<H




THEOREM (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let K be an imaginary quadratic field, and let H be a real
number with H > 1. Then, there exists a number Cy(n), which
is effectively computable in terms of n, such that

H < uz(H; Ok) < H,

and forn > 3,

log log H

H/(log H)C(M H: H—=—%""
/( og ) < /,Ln( 'OK) < (lOg H)1/2




For the proof of the lower bounds in the previous two results we
appeal to a result of Tijdeman from 1973 on integers composed
of a finite set of primes while for the upper bound we give an
explicit construction.




Let S be the set of all rational numbers of the form p/q or —p/q
with distinct primes p, gq. Then the set Sis dense in R and we
now show that M,(S) is not dense in R” for any n > 2.




Let (x1,...,Xn) € Mp(S). Then, there are integers ki, ..., kn,
not all zero, such that

kq
X4

cooxkn =1, (0.19)




As a first step we show that there are integers ki, ..., kn, not all
zero, of absolute value at most 1 such that

X b = 1.




Let aq,...,an be non-zero real numbers and assume that for all
n-tuples (61,...,6n) #(0,...,0) with §; € {—1,0,1},
i=1,...,n, we have

0/15‘ caln £ 41,
For example, we can choose

(a1,...,an) = (2,23,...,23”*‘). (0.20)
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Notice that there is a positive number ¢ such that

aft--ad—1|>c  and oy afi +1/>¢ (0.21)

for any non-zero n-tuple (41, ...,d,) with 6; € {—1,0,1},
i=1,...,n




It follows from (0.21) that there is a small ball around
(aq,...,apn) which does not contain any element of M,(S). As
a consequence, we see that M,(S) is not dense in R".




Thank you for your attention.




