

MULTIPLICATIVELY DEPENDENT VECTORS OF ALGEBRAIC NUMBERS

C.L. Stewart

`cstewart@uwaterloo.ca`

Department of Pure Mathematics
University of Waterloo
Waterloo, Ontario, Canada

Online number theory seminar, Debrecen, Hungary,
January 21, 2022

Let n be a positive integer, G be a multiplicative group and let $\nu = (\nu_1, \dots, \nu_n)$ be in G^n . We say that ν is multiplicatively dependent if there is a non-zero vector $\mathbf{k} = (k_1, \dots, k_n) \in \mathbb{Z}^n$ for which

$$\nu^{\mathbf{k}} = \nu_1^{k_1} \cdots \nu_n^{k_n} = 1. \quad (0.1)$$

We denote by $M_n(G)$ the set of multiplicatively dependent vectors in G^n .

For instance, the set $M_n(\mathbb{C}^*)$ of multiplicatively dependent vectors in $(\mathbb{C}^*)^n$ is of Lebesgue measure zero, since it is a countable union of sets of measure zero. Further, if we fix an exponent vector \mathbf{k} the subvariety of $(\mathbb{C}^*)^n$ determined by (0.1) is an algebraic subgroup of $(\mathbb{C}^*)^n$.

We shall be interested in counting the number of multiplicatively dependent n -tuples whose coordinates are algebraic numbers of fixed degree, or within a fixed number field, and bounded height.

Equivalently we shall count n -tuples of algebraic numbers in a fixed algebraic number field, or of fixed degree, and given height which occur in some proper algebraic subgroup of the algebraic group G_m^n , where G_m is the multiplicative group of an algebraic closure of \mathbb{Q} .

For any algebraic number α , let

$$f(x) = a_d x^d + \cdots + a_1 x + a_0$$

be the minimal polynomial of α over the integers \mathbb{Z} (so with content 1 and positive leading coefficient). Suppose that f factors as

$$f(x) = a_d(x - \alpha_1) \cdots (x - \alpha_d)$$

over the complex numbers \mathbb{C} . The *naive height* $H_0(\alpha)$ of α is given by

$$H_0(\alpha) = \max\{|a_d|, \dots, |a_1|, |a_0|\},$$

and $H(\alpha)$, the height of α , also known as the *absolute Weil height* of α , is defined by

$$H(\alpha) = (a_d \prod_{i=1}^d \max\{1, |\alpha_i|\})^{1/d}.$$

Let K be a number field of degree d (over \mathbb{Q}). We use the following standard notation:

- r_1 and r_2 for the number of real and pairs of complex conjugate embeddings of K , respectively, and put $r = r_1 + r_2 - 1$;
- D, h, R and ζ_K for the discriminant, class number, regulator and Dedekind zeta function of K , respectively;
- w for the number of roots of unity in K .

Note that r is exactly the rank of the unit group of the ring of algebraic integers of K . As usual, let $\zeta(s)$ be the Riemann zeta function.

For any real number x , let $\lceil x \rceil$ denote the smallest integer greater than or equal to x , and let $\lfloor x \rfloor$ denote the greatest integer less than or equal to x .

For a finite set S we use $|S|$ to denote its cardinality.

Let K be a number field of degree d . Denote the set of algebraic integers of K of height at most H by $\mathcal{B}_K(H)$ and the set of algebraic numbers of K of height at most H by $\mathcal{B}_K^*(H)$. Set

$$\mathcal{B}_K(H) = |\mathcal{B}_K(H)|; \mathcal{B}_K^*(H) = |\mathcal{B}_K^*(H)|.$$

Put

$$C_1(K) = \frac{2^{r_1}(2\pi)^{r_2}d^r}{|D|^{1/2}r!}.$$

Widmer(2016) proved that

$$B_K(H) = C_1(K)H^d(\log H)^r + O(H^d(\log H)^{r-1}). \quad (0.2)$$

For any positive integer n , we denote by $L_{n,K}(H)$ the number of multiplicatively dependent n -tuples whose coordinates are algebraic integers of height at most H , and we denote by $L_{n,K}^*(H)$ the number of multiplicatively dependent n -tuples whose coordinates are algebraic numbers of height at most H .

Put

$$C_3(n, K) = \frac{n(n+1)}{2} w C_1(K)^{n-1}.$$

THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let K be a number field of degree d over \mathbb{Q} and let n be an integer with $n \geq 2$. We have

$$L_{n,K}(H) = C_3(n, K) H^{d(n-1)} (\log H)^{r(n-1)} + O\left(H^{d(n-1)} (\log H)^{r(n-1)-1}\right); \quad (0.3)$$

if furthermore $K = \mathbb{Q}$ or is an imaginary quadratic field, we have

$$L_{n,K}(H) = C_3(n, K) H^{d(n-1)} + O\left(H^{d(n-3/2)}\right). \quad (0.4)$$

Define

$$C_2(K) = \frac{2^{2r_1}(2\pi)^{2r_2}2^r hR}{|D|w\zeta_K(2)}.$$

Schanuel proved in 1979 that

$$B_K^*(H) = C_2(K)H^{2d} + O(H^{2d-1}(\log H)^{\sigma(d)}), \quad (0.5)$$

where $\sigma(1) = 1$ and $\sigma(d) = 0$ for $d > 1$.

We estimate $L_{n,K}^*(H)$ next. Put

$$C_4(n, K) = n^2 w C_2(K)^{n-1}.$$

THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let K be a number field of degree d , and let n be an integer with $n \geq 2$. Then, we have

$$L_{n,K}^*(H) = C_4(n, K)H^{2d(n-1)} + O(H^{2d(n-1)-1}g(H)), \quad (0.6)$$

where

$$g(H) = \begin{cases} \log H & \text{if } d = 1 \text{ and } n = 2 \\ \exp(c \log H / \log \log H) & \text{if } d = 1 \text{ and } n > 2 \\ 1 & \text{if } d > 1 \text{ and } n \geq 2, \end{cases}$$

and c is a positive number depending only on n .

The following notion plays a crucial role in our argument.

Let $\overline{\mathbb{Q}}$ be an algebraic closure of the rational numbers \mathbb{Q} . For each ν in $(\overline{\mathbb{Q}}^*)^n$, we define s , the *multiplicative rank* of ν , in the following way. If ν has a coordinate which is a root of unity, we put $s = 0$; otherwise let s be the largest integer with $1 \leq s \leq n$ for which any s coordinates of ν form a multiplicatively independent vector. Notice that

$$0 \leq s \leq n - 1, \tag{0.7}$$

whenever ν is multiplicatively dependent.

We now outline the strategy of the proofs. Given a number field K , we define $L_{n,K,s}(H)$ and $L_{n,K,s}^*(H)$ to be the number of multiplicatively dependent n -tuples of multiplicative rank s whose coordinates are algebraic integers in $\mathcal{B}_K(H)$ and algebraic numbers in $\mathcal{B}_K^*(H)$ respectively. It follows from (0.7) that

$$\begin{cases} L_{n,K}(H) = L_{n,K,0}(H) + \cdots + L_{n,K,n-1}(H) \\ L_{n,K}^*(H) = L_{n,K,0}^*(H) + \cdots + L_{n,K,n-1}^*(H). \end{cases} \quad (0.8)$$

The main term in (0.3) comes from the contributions of $L_{n,K,0}(H)$ and $L_{n,K,1}(H)$ in (0.8), and the main term in our second theorem comes from the contributions of $L_{n,K,0}^*(H)$ and $L_{n,K,1}^*(H)$ in (0.8). To prove our results we make use of (0.8) and the following result.

THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let K be a number field of degree d . Let n and s be integers with $n \geq 2$ and $0 \leq s \leq n - 1$. Then, there exist positive numbers c_1 and c_2 which depend on n and K , such that

$$L_{n,K,s}(H) < H^{d(n-1)-d(\lceil(s+1)/2\rceil-1)} \exp(c_1 \log H / \log \log H) \quad (0.9)$$

and

$$L_{n,K,s}^*(H) < H^{2d(n-1)-d(\lceil(s+1)/2\rceil-1)} \exp(c_2 \log H / \log \log H). \quad (0.10)$$

The next result shows that if algebraic numbers $\alpha_1, \dots, \alpha_n$ are multiplicatively dependent, then we can find a relation where the exponents are not too large. Such a result has found application in transcendence theory.

LEMMA

Let $n \geq 2$, and let $\alpha_1, \dots, \alpha_n$ be multiplicatively dependent non-zero algebraic numbers of degree at most d and height at most H . Then, there is a positive number c , which depends only on n and d , and there are rational integers k_1, \dots, k_n , not all zero, such that

$$\alpha_1^{k_1} \cdots \alpha_n^{k_n} = 1$$

and

$$\max_{1 \leq i \leq n} |k_i| < c(\log H)^{n-1}.$$

This follows from a result of van der Poorten and Loxton.

Let x and y be positive real numbers with y larger than 2, and let $\psi(x, y)$ denote the number of positive integers not exceeding x which contain no prime factors greater than y . Put

$$Z = \left(\log \left(1 + \frac{y}{\log x} \right) \right) \frac{\log x}{\log y} + \left(\log \left(1 + \frac{\log x}{y} \right) \right) \frac{y}{\log y}$$

and

$$u = (\log x)/(\log y).$$

LEMMA

For $2 < y \leq x$, we have

$$\psi(x, y)$$

$$= \exp \left(Z \left(1 + O((\log y)^{-1}) + O((\log \log x)^{-1}) + O((u + 1)^{-1}) \right) \right).$$

This is a result of N.G. de Bruijn from 1966.

Let d be a positive integer, and let $\mathcal{A}_d(H)$, respectively $\mathcal{A}_d^*(H)$, be the set of algebraic integers of degree d (over \mathbb{Q}), respectively algebraic numbers of degree d , of height at most H . We set

$$A_d(H) = |\mathcal{A}_d(H)|; A_d^*(H) = |\mathcal{A}_d^*(H)|.$$

Put

$$C_5(d) = d2^d \prod_{j=1}^{\lfloor (d-1)/2 \rfloor} \frac{d(2j)^{d-2j-1}}{(2j+1)^{d-2j}}$$

and

$$C_6(d) = \frac{d2^d}{\zeta(d+1)} \prod_{j=1}^{\lfloor (d-1)/2 \rfloor} \frac{(d+1)(2j)^{d-2j}}{(2j+1)^{d-2j+1}}.$$

It follows from the work of Barroero from 2014 that

$$A_d(H) = C_5(d)H^{d^2} + O\left(H^{d(d-1)}(\log H)^{\rho(d)}\right), \quad (0.11)$$

where $\rho(2) = 1$ and $\rho(d) = 0$ for any $d \neq 2$.

Masser and Vaaler showed in 2008 that

$$A_d^*(H) = C_6(d)H^{d(d+1)} + O\left(H^{d^2}(\log H)^{\vartheta(d)}\right), \quad (0.12)$$

where $\vartheta(1) = \vartheta(2) = 1$ and $\vartheta(d) = 0$ for any $d \geq 3$.

For any positive integer n , we denote by $M_{n,d}(H)$ the number of multiplicatively dependent n -tuples whose coordinates are algebraic integers in $\mathcal{A}_d(H)$, and we denote by $M_{n,d}^*(H)$ the number of multiplicatively dependent n -tuples whose coordinates are algebraic numbers in $\mathcal{A}_d^*(H)$.

For each positive integer d , we define $w_0(d)$ to be the number of roots of unity of degree d . Let φ denote Euler's totient function. Since $\varphi(k) \gg k / \log \log k$ for any integer $k \geq 3$, it follows that

$$w_0(d) \ll d^2 \log \log d, \tag{0.13}$$

where $d \geq 3$ and the implied constant is absolute. We remark that $w_0(d)$ can be zero, such as for an odd integer $d > 1$.

Given positive integers n and d , we define $C_7(n, d)$ and $C_8(n, d)$ as

$$C_7(n, d) = (nw_0(d) + n(n - 1)) C_5(d)^{n-1}$$

and

$$C_8(n, d) = (nw_0(d) + 2n(n - 1)) C_6(d)^{n-1}.$$

THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let d and n be positive integers with $n \geq 2$. Then, the following hold.

(I) We have

$$M_{n,d}(H) = C_7(n, d)H^{d^2(n-1)} + O\left(H^{d^2(n-1)-d/2}\right); \quad (0.14)$$

furthermore if $d = 2$ or d is odd, we have

$$\begin{aligned} M_{n,d}(H) &= C_7(n, d)H^{d^2(n-1)} \\ &+ O\left(H^{d^2(n-1)-d} \exp(c_0 \log H / \log \log H)\right) \end{aligned} \quad (0.15)$$

THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let d and n be positive integers with $n \geq 2$. Then, the following hold.

(II) We have

$$M_{n,d}^*(H) = C_8(n, d) H^{d(d+1)(n-1)} + O\left(H^{d(d+1)(n-1)-d/2} \log H\right); \quad (0.16)$$

furthermore if $d = 2$ or d is odd, we have

$$\begin{aligned} M_{n,d}^*(H) &= C_8(n, d) H^{d(d+1)(n-1)} \\ &+ O\left(H^{d(d+1)(n-1)-d} \exp(c \log H / \log \log H)\right) \end{aligned} \quad (0.17)$$

and where c is a positive number which depends only on n and d .

How are multiplicatively dependent vectors distributed?

What is the distribution of the elements of $\mathcal{M}_n(S)$ when S is a subset of the real numbers \mathbb{R} or the complex numbers \mathbb{C} with number theoretic interest?

Let K be a number field, which we always identify with one of its models, that is, $K = \mathbb{Q}(\alpha)$ for some algebraic number α . Let \mathcal{O}_K denote the ring of integers of K . We study the distribution of $\mathcal{M}_n(K)$ and $\mathcal{M}_n(\mathcal{O}_K)$ in \mathbb{R}^n and also in \mathbb{C}^n .

We say that a subset S of a ring R is *closed under powering* if for any α in S we also have α^m in S for every non-zero integer m .

THEOREM (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let $n \geq 2$ and let S be a dense subset of \mathbb{R} which is closed under powering. Then $\mathcal{M}_n(S)$ is dense in \mathbb{R}^n .

Since the rationals are dense in \mathbb{R} and closed under powering, we deduce the following result.

COROLLARY (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let $n \geq 2$. Then $\mathcal{M}_n(\mathbb{Q})$ is dense in \mathbb{R}^n .

If $\mathcal{O}_K \cap \mathbb{R} \neq \mathbb{Z}$, then $\mathcal{O}_K \cap \mathbb{R}$ is easily seen to be dense in \mathbb{R} , and since it is closed under powering we have the following result.

COROLLARY (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let $n \geq 2$, and let K be a number field. If $\mathcal{O}_K \cap \mathbb{R} \neq \mathbb{Z}$, then $\mathcal{M}_n(\mathcal{O}_K \cap \mathbb{R})$ is dense in \mathbb{R}^n .

We next consider the situation when \mathbb{R} is replaced by \mathbb{C} .

THEOREM (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let $n \geq 2$ and let S be a dense subset of \mathbb{C} which is closed under powering. Then $\mathcal{M}_n(S)$ is dense in \mathbb{C}^n .

The condition that S be closed under powering can not be removed from the previous two theorems. For example, let S be the set of all algebraic numbers of the form $\zeta p/q$ with ζ a root of unity and with p and q distinct primes. Then S is dense in \mathbb{C} , but $\mathcal{M}_n(S)$ is not dense in \mathbb{C}^n for any $n \geq 2$.

COROLLARY (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let $n \geq 2$, and let K be a number field. If K is not contained in \mathbb{R} , then $\mathcal{M}_n(K)$ is dense in \mathbb{C}^n .

Further if K is a number field of degree at least 3 which is not contained in \mathbb{R} , then \mathcal{O}_K is dense in \mathbb{C} and we have the following result.

COROLLARY (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let $n \geq 2$, and let K be a number field. If $[K : \mathbb{Q}] \geq 3$ and K is not contained in \mathbb{R} , then $\mathcal{M}_n(\mathcal{O}_K)$ is dense in \mathbb{C}^n .

To study the cases of $\mathcal{M}_n(\mathbb{Z})$, which is not dense in \mathbb{R}^n , and of $\mathcal{M}_n(\mathcal{O}_K)$ when K is an imaginary quadratic field, which is not dense in \mathbb{C}^n , we introduce a refinement of the notion of the covering radius of a set .

$\|\mathbf{x}\|$ denotes the Euclidean norm of $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$, that is,

$$\|\mathbf{x}\| = \sqrt{x_1^2 + \dots + x_n^2}.$$

For $H > 1$ we define

$$\rho_n(H; \mathbb{Z}) = \sup_{\substack{\mathbf{x} \in \mathbb{R}^n \\ \|\mathbf{x}\| \leq H}} \inf_{\mathbf{v} \in \mathcal{M}_n(\mathbb{Z})} \|\mathbf{x} - \mathbf{v}\|.$$

We must have

$$\rho_n(H; \mathbb{Z}) \geq c_1(n)H^{1/n}. \quad (0.18)$$

If the points of $\mathcal{M}_n(\mathbb{Z})$ were evenly distributed, then the lower bound above would be sharp.

THEOREM (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

For $H > 1$, we have

$$H \ll \rho_2(H; \mathbb{Z}) \ll H,$$

and for $n \geq 3$

$$H/(\log H)^{C_0(n)} \ll \rho_n(H; \mathbb{Z}) \ll H \frac{(\log \log H)^{n-1}}{(\log H)^{n-2}},$$

where $C_0(n)$ is a positive number which is effectively computable in terms of n .

For $H > 1$ and K an imaginary quadratic field, we put

$$\mu_n(H; \mathcal{O}_K) = \sup_{\substack{\mathbf{x} \in \mathbb{C}^n \\ \|\mathbf{x}\| \leq H}} \inf_{\mathbf{v} \in \mathcal{M}_n(\mathcal{O}_K)} \|\mathbf{x} - \mathbf{v}\|.$$

THEOREM (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let K be an imaginary quadratic field, and let H be a real number with $H > 1$. Then, there exists a number $C_0(n)$, which is effectively computable in terms of n , such that

$$H \ll \mu_2(H; \mathcal{O}_K) \ll H,$$

and for $n \geq 3$,

$$H/(\log H)^{C_0(n)} \ll \mu_n(H; \mathcal{O}_K) \ll H \frac{\log \log H}{(\log H)^{1/2}}.$$

For the proof of the lower bounds in the previous two results we appeal to a result of Tijdeman from 1973 on integers composed of a finite set of primes while for the upper bound we give an explicit construction.

Let S be the set of all rational numbers of the form p/q or $-p/q$ with distinct primes p, q . Then the set S is dense in \mathbb{R} and we now show that $\mathcal{M}_n(S)$ is not dense in \mathbb{R}^n for any $n \geq 2$.

Let $(x_1, \dots, x_n) \in \mathcal{M}_n(S)$. Then, there are integers k_1, \dots, k_n , not all zero, such that

$$x_1^{k_1} \cdots x_n^{k_n} = 1. \quad (0.19)$$

As a first step we show that there are integers k_1, \dots, k_n , not all zero, of absolute value at most 1 such that

$$|x_1^{k_1} \cdots x_n^{k_n}| = 1.$$

Let $\alpha_1, \dots, \alpha_n$ be non-zero real numbers and assume that for all n -tuples $(\delta_1, \dots, \delta_n) \neq (0, \dots, 0)$ with $\delta_i \in \{-1, 0, 1\}$, $i = 1, \dots, n$, we have

$$\alpha_1^{\delta_1} \cdots \alpha_n^{\delta_n} \neq \pm 1.$$

For example, we can choose

$$(\alpha_1, \dots, \alpha_n) = (2, 2^3, \dots, 2^{3^{n-1}}). \quad (0.20)$$

Notice that there is a positive number c such that

$$\left| \alpha_1^{\delta_1} \cdots \alpha_n^{\delta_n} - 1 \right| > c \quad \text{and} \quad \left| \alpha_1^{\delta_1} \cdots \alpha_n^{\delta_n} + 1 \right| > c \quad (0.21)$$

for any non-zero n -tuple $(\delta_1, \dots, \delta_n)$ with $\delta_i \in \{-1, 0, 1\}$,
 $i = 1, \dots, n$.

It follows from (0.21) that there is a small ball around $(\alpha_1, \dots, \alpha_n)$ which does not contain any element of $\mathcal{M}_n(S)$. As a consequence, we see that $\mathcal{M}_n(S)$ is not dense in \mathbb{R}^n .

Thank you for your attention.