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Let n be a positive integer, G be a multiplicative group and let
ννν = (ν1, . . . , νn) be in Gn. We say that ννν is multiplicatively
dependent if there is a non-zero vector k = (k1, . . . , kn) ∈ Zn for
which

νννk = νk1
1 · · · ν

kn
n = 1. (0.1)
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We denote by Mn(G) the set of multiplicatively dependent
vectors in Gn.

For instance, the set Mn(C∗) of multiplicatively dependent
vectors in (C∗)n is of Lebesgue measure zero, since it is a
countable union of sets of measure zero. Further, if we fix an
exponent vector k the subvariety of (C∗)n determined by (0.1) is
an algebraic subgroup of (C∗)n.
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We shall be interested in counting the number of multiplicatively
dependent n-tuples whose coordinates are algebraic numbers
of fixed degree, or within a fixed number field, and bounded
height.

Equivalently we shall count n-tuples of algebraic numbers in a
fixed algebraic number field, or of fixed degree, and given
height which occur in some proper algebraic subgroup of the
algebraic group Gn

m, where Gm is the multiplicative group of an
algebraic closure of Q.
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For any algebraic number α, let

f (x) = adxd + · · ·+ a1x + a0

be the minimal polynomial of α over the integers Z (so with
content 1 and positive leading coefficient). Suppose that f
factors as

f (x) = ad(x − α1) · · · (x − αd)

over the complex numbers C. The naive height H0(α) of α is
given by

H0(α) = max{|ad |, . . . , |a1|, |a0|},

and H(α), the height of α, also known as the absolute Weil
height of α, is defined by

H(α) = (ad

d∏
i=1

max{1, |αi |})1/d .
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Let K be a number field of degree d (over Q). We use the
following standard notation:

r1 and r2 for the number of real and pairs of complex
conjugate embeddings of K , respectively, and put
r = r1 + r2 − 1;
D,h,R and ζK for the discriminant, class number, regulator
and Dedekind zeta function of K , respectively;
w for the number of roots of unity in K .

Note that r is exactly the rank of the unit group of the ring of
algebraic integers of K . As usual, let ζ(s) be the Riemann zeta
function.
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For any real number x , let dxe denote the smallest integer
greater than or equal to x , and let bxc denote the greatest
integer less than or equal to x .

For a finite set S we use |S| to denote its cardinality.
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Let K be a number field of degree d . Denote the set of
algebraic integers of K of height at most H by BK (H) and the
set of algebraic numbers of K of height at most H by B∗K (H).
Set

BK (H) = |BK (H)|;B∗K (H) = |B∗K (H)|.
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Put

C1(K ) =
2r1(2π)r2d r

|D|1/2r !
.

Widmer(2016) proved that

BK (H) = C1(K )Hd(logH)r + O(Hd(logH)r−1). (0.2)
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For any positive integer n, we denote by Ln,K (H) the number of
multiplicatively dependent n-tuples whose coordinates are
algebraic integers of height at most H, and we denote by
L∗n,K (H) the number of multiplicatively dependent n-tuples
whose coordinates are algebraic numbers of height at most H.

Put
C3(n,K ) =

n(n + 1)
2

wC1(K )n−1.
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THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let K be a number field of degree d over Q and let n be an
integer with n ≥ 2. We have

Ln,K (H) = C3(n,K )Hd(n−1)(logH)r(n−1)

+ O
(

Hd(n−1)(logH)r(n−1)−1
)
;

(0.3)

if furthermore K = Q or is an imaginary quadratic field, we have

Ln,K (H) = C3(n,K )Hd(n−1) + O
(

Hd(n−3/2)
)
. (0.4)
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Define

C2(K ) =
22r1(2π)2r22r hR
|D|wζK (2)

.
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Schanuel proved in 1979 that

B∗K (H) = C2(K )H2d + O(H2d−1(logH)σ(d)), (0.5)

where σ(1) = 1 and σ(d) = 0 for d > 1.
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We estimate L∗n,K (H) next. Put

C4(n,K ) = n2wC2(K )n−1.
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THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let K be a number field of degree d, and let n be an integer
with n ≥ 2. Then, we have

L∗n,K (H) = C4(n,K )H2d(n−1) + O(H2d(n−1)−1g(H)), (0.6)

where

g(H) =


logH if d = 1 and n = 2
exp(c logH/ log logH) if d = 1 and n > 2
1 if d > 1 and n ≥ 2,

and c is a positive number depending only on n.
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The following notion plays a crucial role in our argument.
Let Q be an algebraic closure of the rational numbers Q. For
each ννν in (Q∗)n, we define s, the multiplicative rank of ννν, in the
following way. If ννν has a coordinate which is a root of unity, we
put s = 0; otherwise let s be the largest integer with 1 ≤ s ≤ n
for which any s coordinates of ννν form a multiplicatively
independent vector. Notice that

0 ≤ s ≤ n − 1, (0.7)

whenever ννν is multiplicatively dependent.
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We now outline the strategy of the proofs. Given a number field
K , we define Ln,K ,s(H) and L∗n,K ,s(H) to be the number of
multiplicatively dependent n-tuples of multiplicative rank s
whose coordinates are algebraic integers in BK (H) and
algebraic numbers in B∗K (H) respectively. It follows from (0.7)
that 

Ln,K (H) = Ln,K ,0(H) + · · ·+ Ln,K ,n−1(H)

L∗n,K (H) = L∗n,K ,0(H) + · · ·+ L∗n,K ,n−1(H).
(0.8)

The main term in (0.3) comes from the contributions of
Ln,K ,0(H) and Ln,K ,1(H) in (0.8), and the main term in our
second theorem comes from the contributions of L∗n,K ,0(H) and
L∗n,K ,1(H) in (0.8). To prove our results we make use of (0.8)
and the following result.
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THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let K be a number field of degree d. Let n and s be integers
with n ≥ 2 and 0 ≤ s ≤ n − 1. Then, there exist positive
numbers c1 and c2 which depend on n and K , such that

Ln,K ,s(H) < Hd(n−1)−d(d(s+1)/2e−1) exp(c1 logH/ log logH) (0.9)

and

L∗n,K ,s(H) < H2d(n−1)−d(d(s+1)/2e−1) exp(c2 logH/ log logH).
(0.10)
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The next result shows that if algebraic numbers α1, . . . , αn are
multiplicatively dependent, then we can find a relation where
the exponents are not too large. Such a result has found
application in transcendence theory.

LEMMA

Let n ≥ 2, and let α1, . . . , αn be multiplicatively dependent
non-zero algebraic numbers of degree at most d and height at
most H. Then, there is a positive number c, which depends
only on n and d, and there are rational integers k1, . . . , kn, not
all zero, such that

αk1
1 · · ·α

kn
n = 1

and
max

1≤i≤n
|ki | < c(logH)n−1.

This follows from a result of van der Poorten and Loxton.
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Let x and y be positive real numbers with y larger than 2, and
let ψ(x , y) denote the number of positive integers not exceeding
x which contain no prime factors greater than y . Put

Z =

(
log

(
1 +

y
log x

))
log x
log y

+

(
log

(
1 +

log x
y

))
y

log y

and
u = (log x)/(log y).
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LEMMA

For 2 < y ≤ x, we have

ψ(x , y)

= exp
(

Z
(

1 + O((log y)−1) + O((log log x)−1) + O((u + 1)−1)
))

.

This is a result of N.G. de Bruijn from 1966.
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Let d be a positive integer, and let Ad(H), respectively A∗d(H),
be the set of algebraic integers of degree d (over Q),
respectively algebraic numbers of degree d , of height at most
H. We set

Ad(H) = |Ad(H)|;A∗d(H) = |A∗d(H)|.
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Put

C5(d) = d2d
b(d−1)/2c∏

j=1

d(2j)d−2j−1

(2j + 1)d−2j

and

C6(d) =
d2d

ζ(d + 1)

b(d−1)/2c∏
j=1

(d + 1)(2j)d−2j

(2j + 1)d−2j+1 .
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It follows from the work of Barroero from 2014 that

Ad(H) = C5(d)Hd2
+ O

(
Hd(d−1)(logH)ρ(d)

)
, (0.11)

where ρ(2) = 1 and ρ(d) = 0 for any d 6= 2.
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Masser and Vaaler showed in 2008 that

A∗d(H) = C6(d)Hd(d+1) + O
(

Hd2
(logH)ϑ(d)

)
, (0.12)

where ϑ(1) = ϑ(2) = 1 and ϑ(d) = 0 for any d ≥ 3.
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For any positive integer n, we denote by Mn,d(H) the number of
multiplicatively dependent n-tuples whose coordinates are
algebraic integers in Ad(H), and we denote by M∗n,d(H) the
number of multiplicatively dependent n-tuples whose
coordinates are algebraic numbers in A∗d(H).
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For each positive integer d , we define w0(d) to be the number
of roots of unity of degree d . Let ϕ denote Euler’s totient
function. Since ϕ(k)� k/ log log k for any integer k ≥ 3, it
follows that

w0(d)� d2 log log d , (0.13)

where d ≥ 3 and the implied constant is absolute. We remark
that w0(d) can be zero, such as for an odd integer d > 1.
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Given positive integers n and d , we define C7(n,d) and
C8(n,d) as

C7(n,d) = (nw0(d) + n(n − 1))C5(d)n−1

and
C8(n,d) = (nw0(d) + 2n(n − 1))C6(d)n−1.
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THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)

Let d and n be positive integers with n ≥ 2. Then, the following
hold.
(I) We have

Mn,d(H) = C7(n,d)Hd2(n−1) + O
(

Hd2(n−1)−d/2
)
; (0.14)

furthermore if d = 2 or d is odd, we have

Mn,d(H) = C7(n,d)Hd2(n−1)

+ O
(

Hd2(n−1)−d exp(c0 logH/ log logH)
)

(0.15)
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THEOREM (PAPPALARDI, SHA, SHPARLINSKI, S., 2018)
Let d and n be positive integers with n ≥ 2. Then, the following
hold.
(II) We have

M∗n,d(H) = C8(n,d)Hd(d+1)(n−1)+O
(

Hd(d+1)(n−1)−d/2 logH
)
;

(0.16)
furthermore if d = 2 or d is odd, we have

M∗n,d(H) = C8(n,d)Hd(d+1)(n−1)

+ O
(

Hd(d+1)(n−1)−d exp(c logH/ log logH)
)

(0.17)

and where c is a positive number which depends only on
n and d.
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How are multiplicatively dependent vectors distributed?
What is the distribution of the elements ofMn(S) when S is a
subset of the real numbers R or the complex numbers C with
number theoretic interest?
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Let K be a number field, which we always identify with one of
its models, that is, K = Q(α) for some algebraic number α.
Let OK denote the ring of integers of K . We study the
distribution ofMn(K ) andMn(OK ) in Rn and also in Cn.
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We say that a subset S of a ring R is closed under powering if
for any α in S we also have αm in S for every non-zero integer
m.
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THEOREM (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let n ≥ 2 and let S be a dense subset of R which is closed
under powering. ThenMn(S) is dense in Rn.
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Since the rationals are dense in R and closed under powering,
we deduce the following result.

COROLLARY (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let n ≥ 2. ThenMn(Q) is dense in Rn.
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If OK ∩R 6= Z, then OK ∩R is easily seen to be dense in R, and
since it is closed under powering we have the following result.

COROLLARY (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let n ≥ 2, and let K be a number field. If OK ∩ R 6= Z, then
Mn(OK ∩ R) is dense in Rn.
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We next consider the situation when R is replaced by C.

THEOREM (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let n ≥ 2 and let S be a dense subset of C which is closed
under powering. ThenMn(S) is dense in Cn.
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The condition that S be closed under powering can not be
removed from the previous two theorems. For example, let S
be the set of all algebraic numbers of the form ζp/q with ζ a
root of unity and with p and q distinct primes. Then S is dense
in C, butMn(S) is not dense in Cn for any n ≥ 2.
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COROLLARY (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let n ≥ 2, and let K be a number field. If K is not contained in
R, thenMn (K ) is dense in Cn.

Further if K is a number field of degree at least 3 which is not
contained in R, then OK is dense in C and we have the
following result.

COROLLARY (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let n ≥ 2, and let K be a number field. If [K : Q] ≥ 3 and K is
not contained in R, thenMn (OK ) is dense in Cn.
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To study the cases ofMn(Z), which is not dense in Rn, and of
Mn(OK ) when K is an imaginary quadratic field, which is not
dense in Cn, we introduce a refinement of the notion of the
covering radius of a set .
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‖x‖ denotes the Euclidean norm of x = (x1, . . . , xn) ∈ Rn, that
is,

‖x‖ =
√

x2
1 + . . .+ x2

n .

For H > 1 we define

ρn(H;Z) = sup
x∈Rn

‖x‖≤H

inf
v∈Mn(Z)

‖x− v‖.
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We must have
ρn(H;Z) ≥ c1(n)H1/n. (0.18)

If the points ofMn(Z) were evenly distributed, then the lower
bound above would be sharp.
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THEOREM (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

For H > 1, we have

H � ρ2(H;Z)� H,

and for n ≥ 3

H/(logH)C0(n) � ρn(H;Z)� H
(log logH)n−1

(logH)n−2 ,

where C0(n) is a positive number which is effectively
computable in terms of n.
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For H > 1 and K an imaginary quadratic field, we put

µn(H;OK ) = sup
x∈Cn

‖x‖≤H

inf
v∈Mn(OK )

‖x− v‖.
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THEOREM (KONYAGIN, SHA, SHPARLINSKI, S., 2021)

Let K be an imaginary quadratic field, and let H be a real
number with H > 1. Then, there exists a number C0(n), which
is effectively computable in terms of n, such that

H � µ2(H;OK )� H,

and for n ≥ 3,

H/(logH)C0(n) � µn(H;OK )� H
log logH
(logH)1/2 .
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For the proof of the lower bounds in the previous two results we
appeal to a result of Tijdeman from 1973 on integers composed
of a finite set of primes while for the upper bound we give an
explicit construction.
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Let S be the set of all rational numbers of the form p/q or −p/q
with distinct primes p,q. Then the set S is dense in R and we
now show thatMn(S) is not dense in Rn for any n ≥ 2.
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Let (x1, . . . , xn) ∈Mn(S). Then, there are integers k1, . . . , kn,
not all zero, such that

xk1
1 · · · x

kn
n = 1. (0.19)
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As a first step we show that there are integers k1, . . . , kn, not all
zero, of absolute value at most 1 such that

|xk1
1 · · · x

kn
n | = 1.
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Let α1, . . . , αn be non-zero real numbers and assume that for all
n-tuples (δ1, . . . , δn) 6= (0, . . . ,0) with δi ∈ {−1,0,1},
i = 1, . . . ,n, we have

αδ1
1 · · ·α

δn
n 6= ±1.

For example, we can choose

(α1, . . . , αn) =
(

2,23, . . . ,23n−1
)
. (0.20)
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Notice that there is a positive number c such that∣∣∣αδ1
1 · · ·α

δn
n − 1

∣∣∣ > c and
∣∣∣αδ1

1 · · ·α
δn
n + 1

∣∣∣ > c (0.21)

for any non-zero n-tuple (δ1, . . . , δn) with δi ∈ {−1,0,1},
i = 1, . . . ,n.
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It follows from (0.21) that there is a small ball around
(α1, . . . , αn) which does not contain any element ofMn(S). As
a consequence, we see thatMn(S) is not dense in Rn.
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Thank you for your attention.
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