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Independent Efforts

The community is fortunate to have multiple efforts to solve unit
equations under active development.

Joint work of von Känel and Matschke on arithmetic of elliptic
curves with good reduction outside S (includes S-unit equations
over Q, S-integral points on curves, Thue-equations, . . . )
More Information

Benjamin Matschke has a general S-unit solver, currently in
development.
More Information
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General Unit Equation In Two Variables

K a number field of degree d

Γ0, Γ1 finitely generated subgroups of K× Γ := Γ0 × Γ1

τ0, τ1 variables (view τi ∈ Γi ) τ := (τ0, τ1) ∈ Γ

α0, α1 fixed elements of K× × K× α := (α0, α1)

α · τ = α0τ0 + α1τ1

Problem

Determine the set T = {τ ∈ Γ : α · τ = 1}.

C. Rasmussen Solving S-unit equations (arXiv:1903.00977)

arXJiv:1903.00977


8/40

An Incomplete History

T = {τ ∈ Γ : α · τ = 1}

1921 (Siegel) #T <∞ for any number field K , Γ0 = Γ1 = O×K .

1933 (Mahler) #T <∞ for K = Q, Γ0 = Γ1 = Z[ 1
p1
, . . . , 1

pr
]×.

1934 (Gelfond, Schneider) For α, β ∈ Q with α 6= 0, 1 and β 6∈ Q, αβ ∈ C−Q.

1950 (Parry) #T <∞ for any number field K , Γi = O×K ,S , any finite S .

1960 (Lang) #T <∞ for any K with charK = 0, any f.g. Γi ≤ K×

1967 (Baker) For βi ∈ Q with {log βi} Q-independent, and for any nonzero
linear form L ∈ Q[X],

|L(log β1, . . . , log βr )| > H(L)−C , C : effective

1968 (Bremner) For αi ∈ Q∧p , Q-independence of {logp αi} implies

Q-independence.
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An Incomplete History

T = {τ ∈ Γ : α · τ = 1}

1974 (Győry) First explicit bounds on solutions in T .

1984 (Evertse) Bound on #T when Γ0 = Γ1 = O×K ,S .

1985 (Evertse-Győry) Explicit bounds on # of solutions in O×K ,S to Thue
eqns. F (X) = β.

1988 (Evertse-Győry-Stewart-Tijdeman) Fix K , Γ ≤ K×. For α ∈ Γ2,
define N(α) := #{τ ∈ Γ2 : α · τ = 1}.
There exist only finitely many α with N(α) > 2.
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An Incomplete History

T = {τ ∈ Γ : α · τ = 1}

1988 (Yu) Fix p ⊆ OK . For ρi ∈ K× with ordp ρi = 0, either

ρb0
0 ρ

b1
1 · · · ρ

bt
t = 1, or

ordp

(
ρb0

0 ρ
b1
1 · · · ρ

bt
t − 1

)
< C , C : effective

1993 (Baker-Wüstholz) Improvements to bounds in (Baker, 1967).

1996 (Beukers-Schlickewei) Bounds for #T in terms of rankZ Γi only.

2006 (Győry-Yu) For Γ0 = Γ1 = O×K ,S and s = #S , any τ ∈ T satisfies

h(τi ) < (16ds)2s+6

(
1 +

max{1, logRS}
max{1, logPS}

)
·max

i
{h(αi )}
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An Incomplete History

T = {τ ∈ Γ : α · τ = 1}

2016 (von Känel-Matschke) For K = Q, Γi = O×K ,S , can obtain bounds
without methods of Baker, Yu. Solutions induce elliptic curves of
specific conductor.

2019 (Győry) Best known bounds for Γ0 = Γ1 = O×K ,S . Formulas avoid
self-exponential factors, e.g., ss .
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Application: Asymptotic Fermat

Cp : xp + yp + zp = 0, abc 6= 0, p > 3 prime

Theorem (Wiles)

#Cp(Q) = ∅.

#Cp(K ) <∞ by Faltings.

We say K satisfies asymptotic Fermat if Cp(K ) = ∅ for p > BK .

Theorem (Freitas-Siksek)

There exists a family of real quadratic number fields of density at least 5
6

which satisfy asymptotic Fermat.
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Application: Asymptotic Fermat

S = {p : p | 2 and fp = 1}.

Theorem (Freitas-Siksek)

Suppose K is totally real, and suppose [K : Q] is odd or S 6= ∅. If for
every solution τ ∈ T, ordp τi ≤ 4 ordp 2, then K satisfies asymptotic
Fermat.

Theorem (AKMRVW)

Suppose [K : Q] = 3, K is totally real, 2 is totally ramified in K, and
|∆K | ≤ 2000. Then K satisfies asymptotic Fermat.
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Application: Cubic Ramanujan-Nagell

Theorem (Nagell, 1948)

If x , n ∈ Z≥0 satisfy x2 + 7 = 2n, then x ∈ {1, 3, 5, 11, 181}.

Cubic Ramanujan-Nagell equations: x3 + pk = qn.

For p = 3 and fixed q, solutions (x , k , n) may be found by solving the
S-unit equation over Q( 3

√
3) with S = {p : p | 3q} ∪M∞K .

Theorem (AKMRVW)

For q < 500, there are exactly 11 solutions (x , k , n, q) to x3 + pk = qn,
and all have n = 1.
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Application: Curves with bad reduction at one prime

Suppose C → P1 is a cyclic degree p cover and C has good
reduction outside p.

Differences of branch points, αi − αj , must be S-units.

(αi − αj) + (αj − αk) = αi − αk

αi − αj

αi − αk
+
αj − αk

αi − αk
= 1.

K = Q({αi}) has ∆K = ±pm.

Theorem (Smart, 1994)

Every genus 2 curve C/Q with good reduction away from 2 is isomorphic
over Q to a curve appearing in an explicit finite list.

Theorem (Malmskog, R., 2014)

Up to Q-isomorphism, there are exactly 63 Picard curves C/Q with good
reduction away from 3 and a complete list of representative curves has
been produced.
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Many Other Applications

Enumerative problems, e.g. C/K with good reduction outside S

Effective finiteness for binary forms (Evertse-Győry)

Effective results for discriminant form, index form equations. (Győry)

Effective methods on deciding monogeneity (∃?α s.t. OK = Z[α])
in number fields, and for determining all integral bases (Győry)

Strong and effective bounds towards abc-Conjecture (Győry)

among others . . .
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Notation

For the remainder: α = (1, 1), Γ0 = Γ1 = O×K ,S .

K , a number field, dK := [K : Q], w := #µK .

S = Sfin ∪M∞K , a finite set of places (incl. all infinite places)

Sfin = {p1, p2, . . . , ps},
M∞K = {ps+1, . . . , ps+r+1}.

O×K ,S , the group of S-units in K×

O×K ,S = 〈ρ0〉 × 〈ρ1, . . . , ρt〉 ∼=
Z
wZ
× Zt

Shorthand : ρ = (ρ0, ρ1, . . . , ρt).
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Exponent Vectors

AK ,S := Z
wZ × Zt , Φρ : AK ,S

∼=−→ O×K ,S ,

a = (a0, a1, . . . , at) 7→ ρa := ρa0
0 ρ

a1
1 · · · ρ

at
t .

Elements a ∈ AK ,S are called exponent vectors.

|a| := max{|ai | : 0 ≤ i ≤ t}.

XK ,S := {x ∈ O×K ,S : 1− x ∈ O×K ,S}, EK ,S := Φ−1
ρ XK ,S .

Solving τ0 + τ1 = 1 is equivalent to finding EK ,S inside AK ,S .
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Outline of Algorithm

1 Use bounds on linear forms in logarithms (Baker-Wüstholz, Yu),
determine K0 such that a ∈ EK ,S =⇒ |a| ≤ K0.

quick (run time < 1 second) K0 hopelessly large

2 Run a LLL argument to deduce a better bound |a| ≤ K1.

quick (run time in seconds)
effective (K1 ≈ (logK0)c)

not guaranteed to work
requires a known K0

3 Extract EK ,S from search space of size ≈ w(2K1)t by sieve

slow and expensive (time and memory)
sensitive to which primes q ∈ Z split completely in K
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Finding the initial bounds

Suppose (τ0, τ1) is a solution with τi = ρbi , B := |b0| ≥ |b1|

Loop over ` ∈ {1, 2, . . . , t + 1}:

Suppose |τ0|p` = min
{
|τ0|pk : 1 ≤ k ≤ t + 1

}
.

By standard argument1 we have |τ0|p` ≤ exp (−c3B).

Calculate explicit bound K0(`) satisfying B ≤ K0(`).

Case I: p` ∈ M∞K
Case II: p` ∈ Sfin

Set K0 := max{K0(`) : 1 ≤ ` ≤ t + 1}.

1Smart, The solution to TCDF equations, Math. Comp., 1995.
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Initial Bounds – Case I: p` ∈ M∞K

p` corresp. to some σ` : K → C. Work in σ`(K ).

τ0 near 0 =⇒ τ1 near 1 =⇒ log τ1 near 0:

|log τ1| ≤ 2 exp(−c13B).

But log τ1 = b1,0 log ρ0 + b1,1 log ρ1 + · · ·+ b1,t log ρt !

(Baker-Wüstholz) |log τ1| ≥ exp(−c14 logB).

∴ B < a + b logB =⇒ B ≤ K0(`).
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Initial Bounds – Case II: p` ∈ Sfin

|τ0|p`
≤ exp(−c3B) =⇒ ordp`

τ0 ≥ c ′5B > 0

ordp`
τ0 > 0 =⇒ ordp`

τ1 = 0.

Replace ρ with µ := (µ0, µ1, . . . , µt−1), ordp`
µi = 0.

τ1 = µd, |d| ≤ B.

(Yu) ordp`
τ0 < c ′8 logB

∴ B < b logB =⇒ B ≤ K0(`).
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Reduction via LLL - Preliminaries

Suppose L = Z〈v1, v2, . . . , vN〉 ⊆ RN , L∗ := L − {0}

For y ∈ RN , `(L, y) :=

{
min{||x|| : x ∈ L∗} if y ∈ L,
min{||x− y|| : x ∈ L} if y 6∈ L.

LLL Theorem

The reduced basis x1, . . . , xN produced when the LLL algorithm is applied
to L satisfies `(L, 0) ≥ mL,0 := (constant) · ||x1||.

Idea: Build integer lattice L from τ1 = ρb1 . If `(L, y) is large, the
bound K0 may be replaced with K1(`)� K0.

Again depends on the “extremal” place p`: K1 := max{K1(`)}.
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Case: p` complex

Write log ρj = κj + λj
√
−1, κj , λj ∈ R.

Pick C large. (On the order of K0.)

Take L spanned by columns v1, v2, . . . , vt+1 of
1 0 0 0

. . .
...

...
0 1 0 0

[Cκ1] · · · [Cκt−1] [Cκt ] 0
[Cλ1] · · · [Cλt−1] [Cλt ] [C · 2π

w ]



Apply LLL and compute the bound mL,0.

Take y = b1,1v1 + · · ·+ b1,tvt + b1,0vt+1 ∈ L (τ1 = ρb1 )
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Case: p` complex

y = b1,1v1 + · · ·+ b1,t−1vt−1 + b1,tvt + b1,0vt+1

= (b1,1 b1,2 · · · b1,t−1 Φ1 Φ2)ᵀ

By design, Φ1 + Φ2

√
−1 is “close” to C log τ1.

m2
L,0 ≤ ||y||2 =

t−1∑
j=1

b2
1,j +

∣∣∣Φ1 + Φ2

√
−1
∣∣∣2

≤ tK 2
0 + (twK0 + C log τ1)2

≤ tK 2
0 + (twK0 + 2C exp(−c13B))2

If mL,0 � twK 2
1 , this is a stronger constraint on B:

∴ B ≤ K1(`) ≈ 1

c13
log

(
2C√

mL,0 − tK0 − twK0

)
.
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Case: p` complex

If mL,0 � twK 2
1 ,

B ≤ K1(`) ≈ 1

c13
log

(
2C√

mL,0 − tK0 − twK0

)
.

WHILE mL,0 < twK 2
1 :

C ← 2C (changes L)
Re-run LLL and re-compute mL,0

Record new exponent bound K1(`).

If so inclined, replaced K0 with K1(`) and run again!

The approach when p` is real is similar – slightly different lattice L.
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Case: p` finite

Same idea, but we use a different lattice L.

∆ := logp τ1 = logp µ0 +
∑
i

di logp µi

Kp`
= Qp(θ). Express ∆ in the power basis:

∆ = ∆0 + ∆1θ + ∆2θ
2 + · · ·+ ∆n−1θ

n−1

By power series expansion of logp:

∆k = a0,k +
t−1∑
j=1

djaj,k , aj,k ∈ Qp

By appropriate scaling,

λ−1∆k = κ0,k +
t−1∑
j=1

djκj,k , κj,k ∈ Zp

C. Rasmussen Solving S-unit equations (arXiv:1903.00977)

arXJiv:1903.00977


30/40

Case: p` finite

Pick a large u. For L, we take the columns of

(
It−1 O
κ puIn

)
,

where κ :=

 κ1,0 · · · κt−1,0

...
...

κ1,n−1 · · · κt−1,n−1

 “(mod pu)”.

y = −(0, · · · , 0, κ0,0, · · · , κ0,n−1)ᵀ (“mod pu”) Note: y 6∈ L

Similar to complex case: if `(L, y) > t
1
2 K0, we may conclude

B < K1(`) ≈ (constant) · u

(If not, u ← 2u and rerun LLL, etc.)
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After the LLL Reduction

This LLL step is AMAZING . . .

K0 ≈ 10300 LLL
==⇒ K1 ≈ 4000

LLL
==⇒ K1 ≈ 300

. . . but not amazing ENOUGH, e.g.:

K1 ≈ 300, t = 6,w = 2 =⇒ w(2K1 + 1)t ≈ 4.7× 1016.

Need a sieving procedure to execute the final search efficiently.
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Sieving against primes away from S

d = [K : Q], q splits completely in K , q 6∈ p for all p ∈ Sfin.

qOK = q0q1 · · · qd−1, each Fqi
∼= Fq.

Set AK ,S,q−1 := (Z/wZ)× (Z/(q − 1)Z)t .

πq−1 : AK ,S → AK ,S,q−1

residue field vector: For τ ∈ O×K ,S ,

rfvq τ := (τ + q0, τ + q1, . . . , τ + qd−1) ∈ Fd
q .

C. Rasmussen Solving S-unit equations (arXiv:1903.00977)

arXJiv:1903.00977


33/40

Sieving against primes away from S

rfvq τ := (τ + q0, τ + q1, . . . , τ + qd−1) ∈ Fd
q .

Suppose a,b ∈ AK ,S with ρa + ρb = 1. Then:

rfvq ρ
a + rfvq ρ

b = 1 := (1, 1, . . . , 1) ∈ Fd
q .

No entry of rfvq ρ
a is 0 or 1.

rfvq ρ
a is determined by πq−1(a).

rfvq is not surjective: there might not exist b such that

rfvq ρ
a = 1− rfvq ρ

b.

Using several q gives a large collection of congruences that the
exponent vectors in ρa + ρb = 1 must satisfy.
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What’s Good / What’s Bad / What’s Next

The Good

100% public and open source
Integrated into CoCalc/Sage

Reviewed many times (us, referee(s), Sage submission)
Well documented (arXiv:1903.00977, now in Simons Symposia)

The Bad

The case K = Q is handled poorly
The current sieve is slow
Currently restricted to α = (1, 1), Γ = O×K ,S ×O

×
K ,S

Next Steps

Many improvements within reach
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Planned Improvements

Best known height bounds on solutions (Győry, 2019) may improve
Step 1 bounds

Taking K1 = maxK1(`) is inefficient. We can track bounds on each
exponent and shrink the search space.

Use ideas of Smart and Wildanger to eliminate “extreme corners” of
the search space.

Replace the existing sieve with a faster exhaustive search based on
Fincke-Pohst.

(These should address both items in blue on the previous slide.)
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Smart/Wildanger Decompositions

Define certain sets of solutions:

L := {τ ∈ Γ : τ0 + τ1 = 1}
LH := {τ ∈ L : τi = ρbi , |bi | ≤ H}

LH(R) := {τ ∈ LH : R−1 ≤ |α|p ≤ R,∀ p ∈ Sfin}

There are large H,R such that L = LH(R).

For H ′ ≤ H and R ′ ≤ R,

LH(R) = LH′(R ′) ∪
4⋃

j=1

⋃
p∈S

Tj,p,H,R,R′

where elements of Ti,p := Ti,p,H,R,R′ are “extreme” with respect to
p or some exponent on ρ.
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Smart/Wildanger Decompositions

LH(R) = LH′(R ′) ∪
4⋃

j=1

⋃
p∈S

Tj,p

“LLL-type” arguments allow us to argue Tj,p = ∅. This leads to
improvements on each exponent bound K1(`).

Nonempty? Solutions in Tj,p still correspond to vectors which . . .

belong to a lattice generated by an explicit matrix, A, and
belong to a “small” ellipsoid.

The algorithm of Fincke-Pohst can search for all such lattice points.

Once H and R are sufficiently small, Fincke-Pohst can also search
for solutions inside LH(R)!
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Other To-Dos

Allow α 6= (1, 1), or Γi 6= O×K ,S .

Allow Galois constraints.

Decompose search into disjoint pieces (for parallelization/pausing).

Python to Cython where possible.
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