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Let K = Q(
√
d), where Q is the rational field, d is a fundamental

discriminant, let h(d) be the class number of K, and let

χd(n) =

(
d

n

)
be the Kronecker symbol.

Dirichlet Class Number Formula:

For d < 0 we have

h(d) =
w |d|1/2

2π
L(1, χd),

where w is the number of roots of unity in K.

For d > 0 we have

h(d) log ϵd = d1/2L(1, χd),
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where ϵd > 1 is the fundamental unit in K.

First let d < 0. For this case Gauss conjectured that

h (|d|) → ∞

as |d| → ∞.

This was proved by Heilbronn in 1934. Today we can see that it is
an immediate consequence of Dirichlet’s Class Number Formula above
and Siegel’s theorem:

L(1, χ) ≫ϵ q
−ϵ

for a primitive character with conductor q.

HOWEVER: this is ineffective!

The problem of determining all imaginary quadratic fields with class
number 1 remained open for a long time.

This was first solved by Heegner in 1952, but his proof was not accepted
at that time, and then it was also solved independently by Baker and by
Stark in the 1960s.
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The best effective lower bound known today is

h(d) ≫ (log |d|)1−ϵ
,

and it is due to Goldfeld, Gross and Zagier.

Now let d > 0. For this case Gauss conjectured that there are infinitely
many d with class number 1. This problem is still unsolved.

For d > 0, we cannot separate the class number and the fundamental
unit in the Dirichlet Class Number Formula.

However, for some special families of real quadratic fields (where
the fundamental unit is very small), the situation is analoguous to
the imaginary case: Dirichlet’s formula and Siegel’s theorem imply
ineffectively that there are only finitely many solutions of the class
number one problem, but the effective determination of these finitely
many solutions is a separate problem.
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Example (Yokoi’s family): d = n2 + 4 with an integer n and we assume
that d is squarefree. In this case the fundamental unit can be determined
explicitly, and one has

log d≪ log ϵd ≪ log d.

THEOREM 1 (Biró, 2003). Yokoi’s conjecture is true, i.e. if d =
n2+4 for an integer n, d is squarefree and h(d) = 1, then n = 1, 3, 5, 7, 13
or 17.

In fact the method of Goldfeld, Gross and Zagier works also for d > 0,
and it gives

h(d) log ϵd ≫ (log d)
1−ϵ

.

In the case of the Yokoi family this gives

h(d) ≫ (log d)
−ϵ
.

So this argument does not prove Yokoi’s conjecture, but it is not very
far from that.
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Considering Yokoi’s family d = n2 + 4, two questions arise:

Can one define similar families of real quadratic fields, where the
fundamental unit is small?

If yes, can one solve the class number one problem for that family?

There are some results of this kind, for example:

THEOREM 2 (Biró, 2003). Chowla’s conjecture is true, i.e. if
d = 4n2 + 1 for an integer n, d is squarefree and h(d) = 1, then n ≤ 13.

THEOREM 3 (Byeon, Kim and Lee, 2007). Mollin’s conjecture is
true, i.e. if d = n2 − 4 for an integer n, d is squarefree and h(d) = 1,
then n ≤ 21.

In fact every such discriminant is of Richaud-Degert type, which means
the following: d = (an)2 + ka for ±k = 1, 2 or 4.

We have the following theorem for the case k = 4:

THEOREM 4 (Biró, Lapkova 2012). If d = (an)2+4a is squarefree
for a and n positive integers and d > 1253, then h(d) > 1.

It can be expected that the method works for the other values of k.
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What is special about these discriminants?
Their continued fraction expansion is very short, and it can be given
explicitly:

If d = 4n2 + 1, let α = 1−2n+
√
d

2 , then its regular continued fraction
expansion has the form

α =
[
0, 1, 1, 2n− 1

]
.

If d = n2 − 4, let α = 2−n+
√
d

2 , then we have

α =
[
0, 1, n− 2

]
.

If d = (an)2 + 4a, let α = −an+
√
d

2 , then we have

α = [0, n, an] .

There are more such quadratic polynomials, they were characterized
by Schinzel:
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For a quadratic irrational α let us denote by lp (α) the length of the
shortest period of the continued fraction expansion of α.

THEOREM 5 (Schinzel, 1961). Let f(n) = an2 + bn + c with
integers a, b, c satisfying a > 0 and ∆ := b2 − 4ac ̸= 0. Then we have

that lp
(√

f(n)
)
is bounded for n ≥ 1 if and only if a is a square and ∆

divides 4(2a, b)2.

In every such case the fundamental unit can be determined explicitly,
and one has

log d≪ log ϵd ≪ log d.

It is likely that for every fixed f with the above property our method is
suitable to solve the class number one problem.

We now describe the method very shortly.
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Let d > 0 be a fundamental discriminant. Let R be the ring of algebraic
integers of K = Q(

√
d), denote by I(K) the set of nonzero ideals of R

and by P (K) the set of nonzero principal ideals of R. Let N(a) be the
norm of an a ∈ I(K). Let q > 2 be an integer with (q, d) = 1, and let χ
be a primitive character with conductor q. Remember that

χd(n) =

(
d

n

)
is the Kronecker symbol. For ℜs > 1 define

ζK(s) =
∑

a∈I(K)

1

N(a)s
, ζK(s, χ) =

∑
a∈I(K)

χ(N(a))

N(a)s
,

and
ζP (K)(s, χ) =

∑
a∈P (K)

χ(N(a))

N(a)s
.

It is well-known that ζK(s) = ζ(s)L(s, χd). Twisting by χ, we easily see
that

ζK(s, χ) = L(s, χ)L(s, χχd).
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If h(d) = 1, then
ζK(s, χ) = ζP (K)(s, χ),

by definition. Hence

ζP (K)(s, χ) = L(s, χ)L(s, χχd).

Let χ be an odd primitive character modulo q. It is well-known that for a
primitive character ψ with ψ(−1) = −1 and with conductor f one has

L(0, ψ) = − 1

f

f∑
a=1

aψ(a) ̸= 0,

so

qζP (K)(0, χ) =

(
q∑

a=1

aχ(a)

)(
1

qd

qd∑
b=1

bχ(b)χd(b)

)
.

Hence the algebraic integer
∑q

a=1 aχ(a) divides the left-hand side, this
is the basis of the proof. To use this fact we need a formula for the
left-hand side.
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Once we have a formula for the special value at 0 of the partial zeta
function belonging to the principal ideal class, we can use elementary
algebraic number theory: we use the above divisibility condition with
finitely many well-chosen fixed characters χ to get a contradiction with
the class number one condition.

In the case of the Yokoi family I gave such a simple formula without
using the continued fraction expansion.

Then in a joint paper with Andrew Granville in 2012 we generalized that
formula for any quadratic number field, expressing the special value at
0 of a partial zeta function as above in terms of the continued fraction
expansion of ωD = 1+

√
D

2 . Since the continued fraction expansion is
explicitly known in all of the examples given above, so we can use this
formula in every case.

We now state that formula for the special value:
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Let D be an odd squarefree number and K = Q(
√
D). Let ωD = 1+

√
D

2 ,
then its regular continued fraction expansion has the form

ωD = [a0, a1, a2, . . . , al] ,

and let α := ωD − a0. For 1 ≤ j ≤ l define the relatively prime positive
integers pj and qj by

pj
qj

= [0, a1, a2, . . . , aj ] ,

and write
α0 := −α, αj := pj − qjα for 1 ≤ j ≤ l.

For 1 ≤ j ≤ l introduce the quadratic forms

Qj (x, y) = (αj−1x+ αjy) (αj−1x+ αjy) = Ajx
2 +Bjxy + Cjy

2

with rational integer coefficients Aj , Bj , Cj .
Let χ be an odd primitive character modulo q > 1 with (q, 2D) = 1.

12



Then by a paper of Biro and Granville from 2012 we have that ζP (K)(0, χ)
equals the sum of

2

q2

l∑
j=1

∑
1≤u,v≤q−1

uvχ
(
(−1)

j (
Aju

2 +Bjuv + Cjv
2
))

and

Eχ

q2
χ (−D)

(
D

q

) l∑
j=1

ajχ
(
(−1)

j
Aj

)

with an algebraic integer Eχ.

Therefore in order to apply our method for a given family of real quadratic
fields we need the following two properties of the family:
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(1) The size of the logarithm of fundamental unit, i.e. log ϵd should be
small compared to

√
D to ensure through the ineffective theorem of

Siegel that the family has finitely many elements of class number one.

(2) We should know explicitly the continued fraction expansion of
√
D.

Having these conditions for a certain family does not mean automatically
that our method works. It just means that we can make the first steps of
the proof, and we can hope that choosing the characters appropriately
we can determine every field of class number one in the family.

As we mentioned earlier, in the above examples we have log d ≪
log ϵd ≪ log d.

The problem is more difficult in a family where the fundamental unit is
larger. For example, if we take a family where log ϵd may be as large as
log2 d, then the Goldfeld-Gross-Zagier reasoning gives only

h(d) ≫ (log d)
−1−ϵ

,

which is very far from a solution of the class number one problem.
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Several such families are known, e.g. the following family was intro-
duced by Hendy in 1974:

For integers b ≥ 0, c > 0, n ≥ 2 write

D = Dn,b,c := (b (1 + bc)
n
+ c)

2
+ 4 (1 + bc)

n
,

and assume that D is squarefree. Let K = Kn,b,c = Q
(√

Dn,b,c

)
.

The fundamental unit ϵD can be computed explicitly and log ϵd ≪ log2D.

If we assume that bc is not too large in terms of n, precisely we assume
bc > 0 and log(1 + bc) = no(1), then we have

log ϵD ≫ log2−o(1)D.

Indeed, if ωD = 1+
√
D

2 , then its regular continued fraction expansion has
the form

ωD = [a0, a1, a2, . . . , a2n+1] .

We know explicitly the coefficients:

a0 =
1

2
(b (1 + bc)

n
+ c+ 1) ,
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for 0 ≤ i ≤ n− 1 we have

a2i+1 = b (1 + bc)
i
, a2i+2 = b (1 + bc)

n−1−i
,

finally
a2n+1 = b (1 + bc)

n
+ c.

For the fundamental unit we have

ϵD =
b (1 + bc)

n
+ c+

√
D

2

(
b2 (1 + bc)

n
+ 2 + bc+ b

√
D

2 (1 + bc)

)n

.

We were able to solve the problem for this family under the condition
that b is divisible by a certain fixed positive integer N0.

THEOREM 6 (Biró, 2022). Let b ≥ 0, c > 0, n ≥ 2 be integers,
assume that Dn,b,c is squarefree and the field Kn,b,c = Q

(√
Dn,b,c

)
has

class number one. Suppose that N0 divides b, where N0 denotes the
product of 52, 7, 41, 61, and 1861. Then b = 0, and c ∈ {1, 3, 5, 7, 13, 17}.

16



The b = 0 case of Theorem 6 is exactly the statement of Yokoi’s
Conjecture (i.e. Theorem 1 above), so Theorem 6 is a generalization of
Yokoi’s Conjecture.

It is possible that similar statements may be proved with other specific
values of N0. However, we cannot show it with N0 = 1, i.e. the class
number one problem for the entire family remains open.

So there are open problems for families having log ϵD ≪ log2D. But it
would be even more interesting to consider families having even larger,
explicitly determined fundamental units. For example it would be good
to consider a family with log ϵD ≫ log3D.

However, as far as I know, such a family is not known!

An interesting family was given by Yamamoto in 1971. His construction
is based on his following general theorem.
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THEOREM 7 (Yamamoto, 1971). Let p1 < p2 < . . . < pn be rational
primes. Assume that there exist infinitely many real quadratic fields F
satisfying the following condition:
Every pi is decomposed in F into the product of two principal prime
ideals.
Then there exists a positive constant c0 depending only on pi and n such
that

log ϵ > c0 log
n+1D

for sufficiently large D, where D is the discriminant and ϵ is the funda-
mental unit of F .

The proof is elementary, it depends on the following observation:
Assume that Ij , 1 ≤ j ≤ J are principal ideals in a quadratic field F with
the following properties. Each Ij is relatively prime to its conjugate and
N (Ij) <

√
D/2. Then

ϵ ≥
∏
j

( √
D

2N (Ij)

)
.
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And under the conditions of the theorem we can construct many such
ideals: if Pi is a prime ideal divisor of pi, then∏

i

P ki
i

is such an ideal, if its norm is smaller than
√
D/2. The above observation

gives the result.

Then he gave a concrete family: Let p ̸= q be rational primes such that
q does not divide p− 1, and for positive integers k put

D =
(
pkq + p+ 1

)2 − 4p.

This family satisfies the above conditions with n = 2 by the following
simple facts:

We have D ≡ 1 mod 4, D ≡ 1 mod p, D ≡ (p− 1)
2 mod q, and

D −
(
pkq + p+ 1

)2
= −4p, D −

(
pkq + p− 1

)2
= 4pkq.
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For larger n no such example is known.

In the above family

D =
(
pkq + p+ 1

)2 − 4p

we have log ϵ > log3D, but the fundamental unit is not known explicitly.
In fact, I do not know any upper bound for the fundamental unit.
Therefore, not only the effective determination of the fields with class
number one is not known, but I cannot decide even the following
problem:

Problem. Are there infinitely many fields with class number one in the
Yamamoto family?
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