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Linear Recurrences

K field of characteristic 0
A map

U : Z→ K

is called K -valued Linear Recurrence (LR) of order r
if ∃a0, . . . ,ar−1 ∈ K , a0 6= 0 such that ∀n ∈ Z

U(n + r) = ar−1U(n + r − 1) + · · ·+ a0U(n)

Example: Fibonacci LR U(n + 2) = U(n + 1) + U(n)

n · · · −4 −3 −2 −1 0 1 2 3 4 5 6 · · ·
U(n) · · · −3 2 −1 1 0 1 1 2 3 5 8 · · ·
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Binet Formula

χ(T ) = χU(T ) := T r − ar−1T r−1 − · · · − a0 is the characteristic
polynomial of the LR U. It factors as

χ(T ) = (T − λ1)ν1 · · · (T − λs)νs ,

where λ1, . . . , λs ∈ K̄ are distinct and called the roots of U.
Then we have the “Binet Formula”

U(n) = f1(n)λn
1 + · · ·+ fs(n)λn

s ,

where fi (T ) ∈ K̄ [T ] satisfy deg fi ≤ νi − 1.
U is called simple LR if χ(T ) has only simple roots: s = r and
ν1 = · · · = νr = 1. In this case

U(n) = α1λ
n
1 + · · ·+ αrλ

n
r , αi ∈ K̄ .

Example: if U is Fibonacci, then U(n) =

(
1+
√

5
2

)n
−
(

1−
√

5
2

)n

√
5

.
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Zeros of LRs

A zero of a LR U is a solution n ∈ Z of the equation U(n) = 0.
Question: Does every LR (which is not identically 0) have at most
finitely many zeros?
No! Consider the LR of order 2 with the general term 1

2

(
1n + (−1)n

)
:

. . . ,1,0,1,0,1, . . .

Call U non-degenerate if λi/λj is not a root of unity for i 6= j .
For every LR U there exists N such that each of the N LRs

Vk (n) := U(k + Nn) (k = 0,1, . . . ,N − 1)

is either non-degenerate or identically 0. So it suffices to study the
zeros of non-degenerate LRs.
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The Skolem-Mahler-Lech Theorem

Theorem (Skolem 1933, Mahler 1935, Lech 1953) Let U be a
non-degenerate LR with values in a field K of characteristic 0. Then
U has at most finitely many zeros.
Two methods of proof:
I using p-adic interpolation (Skolem etc., inspired important later

work of Chabauty-Coleman-Kim etc.);
I using the Subspace Theorem (was extended by M. Laurent etc.).

Skolem’s argument will be sketched later in this talk.
Both methods are non-effective. In particular, the p-adic method is
non-effective, because knowing a p-adic integer approximately with
any given precision does not allow one to decide whether it is a
rational integer (Z is dense in Zp).
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Skolem Problems

Let K be a number field.
Weak Skolem Problem (WSP): decide whether a given K -valued
non-degenerate LR U admits a zero.
Strong Skolem Problem (SSP): determine all the zeros of a given
K -valued non-degenerate LR U.
Both problems are currently not known to have an effective solution.
By an effective solution we understand an algorithm solving the
problem, together with an explicit estimate for the running time in
terms of the initial data (in our case the terms U(0), . . . ,U(r − 1) and
the coefficients a0, . . . ,ar−1).
However, the SSP can be solved effectively in many special
cases, using “dominant roots”.
From now on, U is a simple non-degenerate LR with values in a
number field K :

U(n) = α1λ
n
1 + · · ·+ αrλ

n
r .

Extending K , we may assume that λ1, . . . , λr , α1, . . . , αr ∈ K×.
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Dominant Roots

Let v ∈ MK . We say that U admits a v -dominant root if the roots
λ1, . . . , λr can be numbered to have

|λ1|v > |λ2|v ≥ · · · ≥ |λr |v .

Proposition. If U admits a v -dominant root for some v ∈ MK then the
zeros n ≥ 0 can be effectively determined.
Proof. For sufficiently large n > 0

|α1λ
n
1|v > |α2λ

n
2 + · · ·+ αrλ

n
r |v . �

Similarly, if U admits a v -antidominant root, that is, for some
numbering we have |λ1|v < |λ2|v ≤ · · · ≤ |λr |v then the zeros n ≤ 0
can be effectively determined.
Corollary If U admits a v -dominant root for some v ∈ MK , and a
v ′-antidominant root for some v ′ ∈ MK then the SSP for U can be
solved effectively.

8 / 22



Dominant Roots II

We say that U admits two v -dominant roots if the roots can be
numbered to have

|λ1|v = |λ2|v > |λ3| ≥ · · · ≥ |λr |v .

The previous argument no longer works. But |α1λ
n
1 + α2λ

n
2|v cannot

be too small by Baker:

|α1λ
n
1 + α2λ

n
2|v = |α1λ

n
1|v
∣∣∣∣α2

α1

(
λ2

λ1

)n

− 1
∣∣∣∣
v
≥ |α1λ

n
1|v e−O(log n).

Hence, for sufficiently large n > 0

|α1λ
n
1 + α2λ

n
2|v > |α3λ

n
3 + · · ·+ αrλ

n
r |v .

Thus, if U admits two v -dominant roots for some v ∈ MK then the
zeros n ≥ 0 can be effectively determined.
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Dominant Roots III

Corollary. SSP can be effectively solved for all simple
non-degenerate LR of order ≤ 3.
Proof. It is not possible to have |λ1|v = |λ2|v for all v ∈ MK because
λ1/λ2 is not a root of unity. Hence for some v the 3 numbers
|λ1|v , |λ2|v , |λ3|v are not all equal, and we have one of the following
three options:
- a v -dominant root and a v -antidominant root;
- two v -dominant roots and a v -antidominant root;
- a v -dominant root and two v -antidominant roots.
In a similar, but more tricky fashion (using a trick due to Beukers) one
proves
Theorem. (Mignotte-Shorey-Tijdeman 1984, Vereshchagin 1985).
SSP can be effectively solved for all simple non-degenerate LR of
order ≤ 4, taking real algebraic values.
However, at present, the dominant roots method does not allow to
solve SSP for general LRs of order ≥ 5, and for LRs of order 4 with
non-real values.
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Conditional Algorithms

Our principal results are.
I An algorithm, which, when terminates, solves the WSP.

Moreover, it produces a zero if there is one. This algorithm
always terminates subject to the Exponential Local-Global
Principle.

I An algorithm, which, when terminates, solves the SSP: it
produces the full list of zeros of a given (simple non-degenerate)
LR, and a rigorous proof of non-existence of further zeros. This
algorithm always terminates subject to the Exponential
Local-Global Principle and the p-adic Schanuel Conjecture.

Unfortunately, we do not obtain, even conditionally, any estimate for
the running time. But the algorithms perform well in practice.
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Exponential Local-Global Principle
Let S be a finite subset of MK , and OS the ring of S-integers in K .
Let U a set of simple LRs U with general term

U(n) = α1λ
n
1 + · · ·+ αrλ

n
r

where α1, . . . , αr ∈ OS and λ1, . . . , λr ∈ O×S .
We say that the set U satisfies the Exponential Local-Global Principle
(ELGP) if ∀U ∈ U one of the following holds:
I either ∃n ∈ Z such that U(n) = 0,
I or there is a non-zero ideal a of OS such that

∀n ∈ Z U(n) 6≡ 0 mod a.

Remark: ELGP does not extend to non-simple LRs, because the
Local-Global Principle does not hold for polynomials. For example,
the polynomials (T 2 − 13)(T 2 − 17)(T 2 − 221) and
(T 3 − 19)(T 2 + T + 1) have a root modulo every integer, but not a
root in Q.
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Algorithm for Weak Skolem Problem

Run simultaneously
I search for n ∈ Z such that U(n) = 0, and
I search for a non-zero ideal a such that U does not vanish moda.

If the algorithm terminates, it produces either a zero of U, or a
rigorous proof of non-existence of a zero.
Assuming the ELGP, the algorithm always terminates.
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p-adic log and exp

p ≥ 3 a prime number. For z ∈ Zp satisfying |z|p < 1 define

exp(z) :=
∞∑

n=0

zn

n!
.

For z ∈ Zp satisfying |z − 1|p < 1 define

log(z) :=
∞∑

n=1

(−1)n−1 (z − 1)n

n
.

Then
| exp(z)− 1|p = |z|p, | log(z)|p = |z − 1|p,

and all familiar properties are satisfied.
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p-adic Interpolation of a LR

I K a number field;
I U(n) = α1λ

n
1 + · · ·+ αrλ

n
r , αi , λi ∈ K×.

Let p ≥ 3 be a prime number such that

K ↪→ Qp, λi ∈ Z×p , αi ∈ Zp.

There are infinitely many such p.
Want to define U(z) for all z ∈ Zp.
Need to define λz

i . The straightforward λz
i := exp(z log λi ) does not

work, because we need |λi − 1|p < 1 to define log λi .

Little Fermat: |λp−1
i − 1|p < 1.

For k ∈ {0,1, . . . ,p − 2} we may define

λ
k+z(p−1)
i := λk

i exp
(
z log(λp−1

i )
)
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p-adic Interpolation of a LR II

Theorem. For k = 0,1, . . . ,p − 2 define

gk (z) :=
r∑

i=1

αiλ
k
i exp

(
z log(λp−1

i )
)
.

Then gk : Zp → Zp is an analytic function, satisfying

gk (m) = U(k + m(p − 1)) (m ∈ Z).

If U is non-degenerate, then the functions gk are not identically 0.
Corollary. (Skolem-Mahler-Lech) If U is non-degenerate then
equation U(n) = 0 has at most finitely many solutions in n ∈ Z.
Proof. Equation gk (z) = 0 has at most finitely many solutions in
z ∈ Zp, because Zp is compact and the set of solutions is discrete
(the zeros of an analytic function are “isolated”).
Remark. The Skolem-Mahler-Lech Theorem extends to arbitrary K of
characteristic 0 using the Lech-Cassels Embedding Theorem.
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The p-adic Schanuel conjecture

Classical Schanuel Conjecture. if β1, . . . , βs ∈ C are linearly
independent over Q, then the field Q(β1, . . . , βs,eβ1 , . . . ,eβs ) is of
transcendence degree ≥ s (over Q).
Known in the case when β1, . . . , βs ∈ Q̄ (Lindemann-Weierstrass),
and in some special cases, but widely open in general.
p-adic Schanuel Conjecture. if β1, . . . , βs ∈ pZp are linearly
independent over Q, then the field Q(β1, . . . , βs, exp(β1), . . . , exp(βs))
is of transcendence degree ≥ s.
A special case: If γ1, . . . , γs ∈ 1 + pZp are algebraic over Q and
multiplicatively independent, then the log γ1, . . . , log γs are
algebraically independent over Q.
Remark: the p-adic Schanuel is considered even harder, than the
complex Schanuel; for instance, the p-adic LW is still an open
problem.
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Isolating a Zero in a Residue Class

Proposition. Let a ∈ Z be a zero of U. Then there exist N ∈ Z>0
such that U(n) 6= 0 for n ≡ a mod N and n 6= a.
Proof. Let k ∈ {0,1, . . . ,p − 2} be such that a ≡ k mod p − 1. Write
a = k + b(p − 1). Then

gk (b) = U(k + b(p − 1)) = U(a) = 0.

Since the zeros of an analytic function are isolated, there exists ` > 0
such that

gk (b + p`z) 6= 0

for z ∈ Zp, z 6= 0. Now define N = (p − 1)p`.
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Finding N and Schanuel

To find N, we need to find ` such that the analytic function
z 7→ gk (b + z) does not vanish in in the pierced disk 0 < |z|p ≤ p−`.
The problem reduces to finding the first non-zero coefficient in the
Taylor expansion

gk (b + z) = c1z + c2z2 + · · · .

The coefficients are polynomials in log γi , where γi := λp−1
i .

We may assume that λ1, . . . , λs, s ≤ r , is a maximal multiplicatively
independent subset of λ1, . . . , λr . Then the coefficients are
polynomials in log γ1, . . . , log γs:

cj = Pj
(
log γ1, . . . , log γs

)
, Pj ∈ K [T1, . . . ,Ts].

The p-adic Schanuel implies the following: ci = 0 iff Pi is an
identically zero polynomial.
Thus, assuming Schanuel, finding N reduces to the finding the
smallest i such that Pi is not identically zero.
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Algorithm for Solving the Strong Skolem Problem

1. Solve the WSP for U, using the previous algorithm.
2. If U does not vanish, done.

3. If we find a zero a of U, we look for N such that a is the only zero
in its residue class modN.

4. We repeat recursively the previous steps for the N − 1 LRs
Vk (n) := U(k + Nn), where k runs all the residue classes modN
except a mod N.

Step 1 terminates assuming the ELGP, and Step 3 terminates
assuming the p-adic Schanuel. Recursion also terminates because U
has at most finitely many zeros, and on each stage we filter out one
zero.
The algorithm is implemented in the Skolem Tool:

https://skolem.mpi-sws.org/
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Example: Tribonacci sequence

T (0) = 0, T (1) = 1, T (2) = 1,
T (n + 3) = T (n + 2) + T (n + 1) + T (n)

n · · · −6 −5 −4 −3 −2 −1 0 1 2 3 · · ·
T (n) · · · −3 2 0 −1 1 0 0 1 1 2 · · ·

We see that T (0) = T (−1) = T (−4) = 0. Also, T (−17) = 0
Mignotte, Tzanakis (1991): T (n) = 0⇐⇒ n ∈ {0,−1,−4,−17}
Proof uses congruences (similar to our method).
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Köszönöm!
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