Skolem meets Schanuel

Yuri Bilu joint work with Florian Luca, Joris Nieuwveld, Joël Ouaknine, David Purser, James (Ben) Worrell

> Online Number Theory Seminar January 19, 2024

My co-authors

Florian

Joris

Joël

David

Ben

Linear Recurrences

K field of characteristic 0

A map

$$U:\mathbb{Z} \to K$$

is called *K*-valued Linear Recurrence (LR) of order *r* if $\exists a_0, \ldots, a_{r-1} \in K$, $a_0 \neq 0$ such that $\forall n \in \mathbb{Z}$

$$U(n+r) = a_{r-1}U(n+r-1) + \cdots + a_0U(n)$$

Example: Fibonacci LR U(n+2) = U(n+1) + U(n)

Binet Formula

 $\chi(T) = \chi_U(T) := T^r - a_{r-1}T^{r-1} - \cdots - a_0$ is the characteristic polynomial of the LR *U*. It factors as

$$\chi(T) = (T - \lambda_1)^{\nu_1} \cdots (T - \lambda_s)^{\nu_s},$$

where $\lambda_1, \ldots, \lambda_s \in \overline{K}$ are distinct and called the roots of *U*. Then we have the "Binet Formula"

$$U(n) = f_1(n)\lambda_1^n + \cdots + f_s(n)\lambda_s^n$$

where $f_i(T) \in K[T]$ satisfy deg $f_i \leq \nu_i - 1$. *U* is called simple LR if $\chi(T)$ has only simple roots: s = r and $\nu_1 = \cdots = \nu_r = 1$. In this case

$$U(n) = \alpha_1 \lambda_1^n + \cdots + \alpha_r \lambda_r^n, \qquad \alpha_i \in \bar{K}.$$

Example: if *U* is Fibonacci, then $U(n) = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}$.

Zeros of LRs

A zero of a LR *U* is a solution $n \in \mathbb{Z}$ of the equation U(n) = 0. **Question:** Does every LR (which is not identically 0) have at most finitely many zeros?

No! Consider the LR of order 2 with the general term $\frac{1}{2}(1^n + (-1)^n)$:

 $\ldots,1,0,1,0,1,\ldots$

Call *U* non-degenerate if λ_i/λ_j is not a root of unity for $i \neq j$. For every LR *U* there exists *N* such that each of the *N* LRs

$$V_k(n) := U(k + Nn)$$
 $(k = 0, 1, ..., N - 1)$

is either non-degenerate or identically 0. So it suffices to study the zeros of non-degenerate LRs.

(ロ) (四) (E) (E) (E) (E)

The Skolem-Mahler-Lech Theorem

Theorem (Skolem 1933, Mahler 1935, Lech 1953) Let U be a non-degenerate LR with values in a field K of characteristic 0. Then U has at most finitely many zeros.

Two methods of proof:

- using *p*-adic interpolation (Skolem etc., inspired important later work of Chabauty-Coleman-Kim etc.);
- using the Subspace Theorem (was extended by M. Laurent etc.).

Skolem's argument will be sketched later in this talk.

Both methods are non-effective. In particular, the *p*-adic method is non-effective, because knowing a *p*-adic integer approximately with any given precision does not allow one to decide whether it is a rational integer (\mathbb{Z} is dense in \mathbb{Z}_p).

Skolem Problems

Let *K* be a **number field**.

Weak Skolem Problem (WSP): decide whether a given *K*-valued non-degenerate LR *U* admits a zero.

Strong Skolem Problem (SSP): determine all the zeros of a given *K*-valued non-degenerate LR *U*.

Both problems are currently not known to have an effective solution. By an effective solution we understand an **algorithm** solving the problem, together with an explicit **estimate for the running time** in terms of the initial data (in our case the terms $U(0), \ldots, U(r-1)$ and the coefficients a_0, \ldots, a_{r-1}).

However, the SSP can be solved effectively in many special cases, using "dominant roots".

From now on, U is a **simple non-degenerate LR** with values in a number field K:

$$U(n) = \alpha_1 \lambda_1^n + \cdots + \alpha_r \lambda_r^n.$$

Extending *K*, we may assume that $\lambda_1, \ldots, \lambda_r, \alpha_1, \ldots, \alpha_r \in K^{\times}$.

Dominant Roots

Let $v \in M_K$. We say that *U* admits a *v*-dominant root if the roots $\lambda_1, \ldots, \lambda_r$ can be numbered to have

$$|\lambda_1|_{\mathbf{v}} > |\lambda_2|_{\mathbf{v}} \ge \cdots \ge |\lambda_r|_{\mathbf{v}}.$$

Proposition. If *U* admits a *v*-dominant root for some $v \in M_K$ then the zeros $n \ge 0$ can be effectively determined.

Proof. For sufficiently large n > 0

$$|\alpha_1\lambda_1^n|_{\mathbf{v}} > |\alpha_2\lambda_2^n + \cdots + \alpha_r\lambda_r^n|_{\mathbf{v}}.$$

Similarly, if *U* admits a *v*-antidominant root, that is, for some numbering we have $|\lambda_1|_v < |\lambda_2|_v \le \cdots \le |\lambda_r|_v$ then the zeros $n \le 0$ can be effectively determined.

Corollary If *U* admits a *v*-dominant root for some $v \in M_K$, and a *v*'-antidominant root for some $v' \in M_K$ then the SSP for *U* can be solved effectively.

Dominant Roots II

We say that U admits two v-dominant roots if the roots can be numbered to have

$$|\lambda_1|_{\boldsymbol{\nu}} = |\lambda_2|_{\boldsymbol{\nu}} > |\lambda_3| \ge \cdots \ge |\lambda_r|_{\boldsymbol{\nu}}.$$

The previous argument no longer works. But $|\alpha_1 \lambda_1^n + \alpha_2 \lambda_2^n|_v$ cannot be too small by Baker:

$$|\alpha_1\lambda_1^n + \alpha_2\lambda_2^n|_{\boldsymbol{\nu}} = |\alpha_1\lambda_1^n|_{\boldsymbol{\nu}} \left| \frac{\alpha_2}{\alpha_1} \left(\frac{\lambda_2}{\lambda_1} \right)^n - 1 \right|_{\boldsymbol{\nu}} \ge |\alpha_1\lambda_1^n|_{\boldsymbol{\nu}} \boldsymbol{e}^{-O(\log n)}.$$

Hence, for sufficiently large n > 0

$$|\alpha_1\lambda_1^n + \alpha_2\lambda_2^n|_{\nu} > |\alpha_3\lambda_3^n + \dots + \alpha_r\lambda_r^n|_{\nu}.$$

Thus, if *U* admits two *v*-dominant roots for some $v \in M_K$ then the zeros $n \ge 0$ can be effectively determined.

Dominant Roots III

Corollary. SSP can be effectively solved for all simple non-degenerate LR of order \leq 3.

Proof. It is not possible to have $|\lambda_1|_v = |\lambda_2|_v$ for all $v \in M_K$ because λ_1/λ_2 is not a root of unity. Hence for some v the 3 numbers $|\lambda_1|_v, |\lambda_2|_v, |\lambda_3|_v$ are not all equal, and we have one of the following three options:

- a v-dominant root and a v-antidominant root;
- two v-dominant roots and a v-antidominant root;
- a v-dominant root and two v-antidominant roots.

In a similar, but more tricky fashion (using a trick due to Beukers) one proves

Theorem. (Mignotte-Shorey-Tijdeman 1984, Vereshchagin 1985). SSP can be effectively solved for all simple non-degenerate LR of order \leq 4, taking real algebraic values.

However, at present, the dominant roots method does not allow to solve SSP for general LRs of order \geq 5, and for LRs of order 4 with non-real values.

Conditional Algorithms

Our principal results are.

- An algorithm, which, when terminates, solves the WSP. Moreover, it produces a zero if there is one. This algorithm always terminates subject to the Exponential Local-Global Principle.
- An algorithm, which, when terminates, solves the SSP: it produces the full list of zeros of a given (simple non-degenerate) LR, and a rigorous proof of non-existence of further zeros. This algorithm always terminates subject to the Exponential Local-Global Principle and the *p*-adic Schanuel Conjecture.

Unfortunately, we do not obtain, even conditionally, any estimate for the running time. But the algorithms perform well in practice.

Exponential Local-Global Principle

Let *S* be a finite subset of M_K , and \mathcal{O}_S the ring of *S*-integers in *K*. Let \mathcal{U} a set of simple LRs *U* with general term

$$U(n) = \alpha_1 \lambda_1^n + \cdots + \alpha_r \lambda_r^n$$

where $\alpha_1, \ldots, \alpha_r \in \mathcal{O}_S$ and $\lambda_1, \ldots, \lambda_r \in \mathcal{O}_S^{\times}$.

We say that the set \mathcal{U} satisfies the Exponential Local-Global Principle (ELGP) if $\forall U \in \mathcal{U}$ one of the following holds:

• either $\exists n \in \mathbb{Z}$ such that U(n) = 0,

• or there is a non-zero ideal \mathfrak{a} of \mathcal{O}_S such that

 $\forall n \in \mathbb{Z}$ $U(n) \not\equiv 0 \mod \mathfrak{a}$.

Remark: ELGP does not extend to non-simple LRs, because the Local-Global Principle does not hold for polynomials. For example, the polynomials $(T^2 - 13)(T^2 - 17)(T^2 - 221)$ and $(T^3 - 19)(T^2 + T + 1)$ have a root modulo every integer, but not a root in \mathbb{Q} .

Algorithm for Weak Skolem Problem

Run simultaneously

- ▶ search for $n \in \mathbb{Z}$ such that U(n) = 0, and
- search for a non-zero ideal a such that U does not vanish moda.

If the algorithm terminates, it produces either a zero of U, or a rigorous proof of non-existence of a zero.

Assuming the ELGP, the algorithm always terminates.

p-adic log and exp

 $\rho \geq$ 3 a prime number. For $z \in \mathbb{Z}_{\rho}$ satisfying $|z|_{\rho} <$ 1 define

$$\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

For $z \in \mathbb{Z}_p$ satisfying $|z - 1|_p < 1$ define

$$\log(z) := \sum_{n=1}^{\infty} (-1)^{n-1} \frac{(z-1)^n}{n}.$$

Then

$$|\exp(z) - 1|_{p} = |z|_{p}, \qquad |\log(z)|_{p} = |z - 1|_{p},$$

and all familiar properties are satisfied.

p-adic Interpolation of a LR

► *K* a number field;

$$\blacktriangleright U(n) = \alpha_1 \lambda_1^n + \cdots + \alpha_r \lambda_r^n, \quad \alpha_i, \lambda_i \in K^{\times}.$$

Let $p \ge 3$ be a prime number such that

$$K \hookrightarrow \mathbb{Q}_p, \qquad \lambda_i \in \mathbb{Z}_p^{\times}, \qquad \alpha_i \in \mathbb{Z}_p.$$

There are infinitely many such *p*.

Want to define U(z) for all $z \in \mathbb{Z}_p$.

Need to define λ_i^z . The straightforward $\lambda_i^z := \exp(z \log \lambda_i)$ does not work, because we need $|\lambda_i - 1|_p < 1$ to define $\log \lambda_i$.

Little Fermat:
$$|\lambda_i^{p-1} - 1|_p < 1$$
.
For $k \in \{0, 1, \dots, p-2\}$ we may define
 $\lambda_i^{k+z(p-1)} := \lambda_i^k \exp(z \log(\lambda_i^{p-1}))$

p-adic Interpolation of a LR II

Theorem. For $k = 0, 1, \ldots, p - 2$ define

$$g_k(z) := \sum_{i=1}^r \alpha_i \lambda_i^k \exp(z \log(\lambda_i^{p-1})).$$

Then $g_k : \mathbb{Z}_p \to \mathbb{Z}_p$ is an analytic function, satisfying

$$g_k(m) = U(k + m(p-1)) \qquad (m \in \mathbb{Z}).$$

If *U* is non-degenerate, then the functions g_k are not identically 0. **Corollary.** (Skolem-Mahler-Lech) If *U* is non-degenerate then equation U(n) = 0 has at most finitely many solutions in $n \in \mathbb{Z}$. **Proof.** Equation $g_k(z) = 0$ has at most finitely many solutions in $z \in \mathbb{Z}_p$, because \mathbb{Z}_p is compact and the set of solutions is discrete (the zeros of an analytic function are "isolated").

Remark. The Skolem-Mahler-Lech Theorem extends to arbitrary K of characteristic 0 using the Lech-Cassels Embedding Theorem.

The *p*-adic Schanuel conjecture

Classical Schanuel Conjecture. if $\beta_1, \ldots, \beta_s \in \mathbb{C}$ are linearly independent over \mathbb{Q} , then the field $\mathbb{Q}(\beta_1, \ldots, \beta_s, e^{\beta_1}, \ldots, e^{\beta_s})$ is of transcendence degree $\geq s$ (over \mathbb{Q}).

Known in the case when $\beta_1, \ldots, \beta_s \in \overline{\mathbb{Q}}$ (Lindemann-Weierstrass), and in some special cases, but widely open in general.

p-adic Schanuel Conjecture. if $\beta_1, \ldots, \beta_s \in p\mathbb{Z}_p$ are linearly independent over \mathbb{Q} , then the field $\mathbb{Q}(\beta_1, \ldots, \beta_s, \exp(\beta_1), \ldots, \exp(\beta_s))$ is of transcendence degree $\geq s$.

A special case: If $\gamma_1, \ldots, \gamma_s \in 1 + p\mathbb{Z}_p$ are algebraic over \mathbb{Q} and multiplicatively independent, then the $\log \gamma_1, \ldots, \log \gamma_s$ are algebraically independent over \mathbb{Q} .

Remark: the *p*-adic Schanuel is considered even harder, than the complex Schanuel; for instance, the *p*-adic LW is still an open problem.

Isolating a Zero in a Residue Class

Proposition. Let $a \in \mathbb{Z}$ be a zero of U. Then there exist $N \in \mathbb{Z}_{>0}$ such that $U(n) \neq 0$ for $n \equiv a \mod N$ and $n \neq a$. **Proof.** Let $k \in \{0, 1, \dots, p-2\}$ be such that $a \equiv k \mod p - 1$. Write a = k + b(p - 1). Then

$$g_k(b) = U(k + b(p - 1)) = U(a) = 0.$$

Since the zeros of an analytic function are isolated, there exists $\ell > 0$ such that

$$g_k(b+p^\ell z) \neq 0$$

for $z \in \mathbb{Z}_p$, $z \neq 0$. Now define $N = (p-1)p^{\ell}$.

Finding N and Schanuel

To find *N*, we need to find ℓ such that the analytic function $z \mapsto g_k(b+z)$ does not vanish in the pierced disk $0 < |z|_p \le p^{-\ell}$. The problem reduces to finding the first non-zero coefficient in the Taylor expansion

$$g_k(b+z)=c_1z+c_2z_2+\cdots$$

The coefficients are polynomials in $\log \gamma_i$, where $\gamma_i := \lambda_i^{p-1}$. We may assume that $\lambda_1, \ldots, \lambda_s$, $s \leq r$, is a maximal multiplicatively independent subset of $\lambda_1, \ldots, \lambda_r$. Then the coefficients are polynomials in $\log \gamma_1, \ldots, \log \gamma_s$:

$$c_j = P_j (\log \gamma_1, \ldots, \log \gamma_s), \qquad P_j \in K[T_1, \ldots, T_s].$$

The *p*-adic Schanuel implies the following: $c_i = 0$ iff P_i is an identically zero polynomial.

Thus, assuming Schanuel, finding N reduces to the finding the smallest *i* such that P_i is not identically zero.

Algorithm for Solving the Strong Skolem Problem

- 1. Solve the WSP for U, using the previous algorithm.
- 2. If U does not vanish, done.
- 3. If we find a zero *a* of *U*, we look for *N* such that *a* is the only zero in its residue class mod *N*.
- We repeat recursively the previous steps for the *N* − 1 LRs *V_k(n)* := *U*(*k* + *Nn*), where *k* runs all the residue classes mod *N* except *a* mod *N*.

Step 1 terminates assuming the ELGP, and Step 3 terminates assuming the p-adic Schanuel. Recursion also terminates because U has at most finitely many zeros, and on each stage we filter out one zero.

The algorithm is implemented in the Skolem Tool:

https://skolem.mpi-sws.org/

Example: Tribonacci sequence

$$T(0) = 0, \quad T(1) = 1, \quad T(2) = 1,$$

$$T(n+3) = T(n+2) + T(n+1) + T(n)$$

$$\frac{n \mid \cdots \quad -6 \quad -5 \quad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad \cdots}{T(n) \mid \cdots \quad -3 \quad 2 \quad 0 \quad -1 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 2 \quad \cdots}$$

We see that $T(0) = T(-1) = T(-4) = 0$. Also, $T(-17) = 0$
Mignotte, Tzanakis (1991): $T(n) = 0 \iff n \in \{0, -1, -4, -17\}$

Proof uses congruences (similar to our method).

Köszönöm!