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Plan of the talk

• Introduction

• Extendability of Diophantine graphs

• Bounds for the number of edges in Diophantine graphs:

lower bounds
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• Chromatic number of Diophantine graphs

• Remarks and open problems

The presented new results are joint with L. Hajdu, A. Pongrácz.
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Introduction

A Diophantine n-tuple is a set {a1, . . . ,an} of distinct positive integers
if aiaj + 1 is a square (1 ≤ i < j ≤ n).

Fermat: {1,3,8,120} is a Diophantine quadruple

Baker and Davenport: {1,3,8} can be extended to a Diophantine
quadruple only by adjoining 120. Thus {1,3,8} cannot be extended to
a Diophantine quintuple.

Dujella and Pethő: already the pair {1,3} cannot be extended to a
Diophantine quintuple

Dujella: there are no Diophantine sextuples and there are only finitely
many Diophantine quintuples

He, Togbé and Ziegler: there are no Diophantine quintuples
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Introduction

We study Diophantine graphs.

Let V ⊆ N. The induced Diophantine graph D(V ) has vertex set V ,
and two numbers in V are linked by an edge if and only if their product
increased by one is a square.

A finite graph G is a Diophantine graph if it is isomorphic to D(V ) for
some finite set V ⊆ N. Then D(V ) is a representation of G as a
Diophantine graph.
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Introduction

Studying properties of integers through graphs has a long tradition.

J. A. Gallian, A Dynamic Survey of Graph Labeling, Twenty-sixth
edition, December 1, 2023, Electronic J. Combin. #DS6, (1998):
7 sections, 65 subsections, 3295 references.

One example:
Arithmetic graphs: two integers are linked if and only if their
difference is divisible only by primes coming from a fixed finite set.
(Results of Győry, Ruzsa, Tijdeman, Ćustić, Kreso, Hajdu and
others, also in the algebraic case.)

Some of the main directions of research: representability and
structural questions, edge density, important applications.
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Introduction

The results mentioned describe complete Diophantine graphs.
He, Togbé and Ziegler: K5 is a ’forbidden’ subgraph.

Dujella: upper bounds for the number of the Kt subgraphs of D(VN)
for 2 ≤ t ≤ 4 and VN = {1, . . . ,N}. (Motivation: study Diophantine
pairs, triples and quadruples in {1, . . . ,N}.)

Bugeaud and Gyarmati: (beside several other interesting results, e.g.
for higher and mixed powers) the number of edges in a Diophantine
graph on N vertices is bounded by 0.4N2.

Yip: recent results for bipartite Diophantine graphs for higher powers

Note that the cases k = 2 and k ≥ 3 are rather different in nature.
A strong warning is the following open problem:

Dujella: Is K3,3 Diophantine?
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Extendability of Diophantine graphs

We start with the question of extensions of Diophantine graphs:
given D(V ), we would like to attach a new vertex, linked to some
prescribed old vertices.

As we will see, it is always possible to find a new isolated vertex, or a
vertex which is linked to exactly one vertex of a given Diophantine
graph D(V ).

In fact, there are always infinitely many appropriate positive integers to
solve these problems.
To extend a Diophantine graph D(V ) by a vertex which is linked to
exactly two given vertices in V is more problematic.

If the square-free parts of two different numbers v1, v2 ∈ V coincide,
then there are only finitely many common neighbors w of v1, v2 in N.
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Extendability of Diophantine graphs

Theorem 1 (G. Batta, A. Pongrácz, H (202?))
Let V = {v1, . . . , vn} ⊆ N. Then each of the following conditions is
satisfied by infinitely many positive integers w whose square-free parts
differ from that of vk for all 1 ≤ k ≤ n:

i) w is an isolated vertex of D(V ∪ {w}),

ii) w is linked in D(V ∪ {w}) to exactly one arbitrarily prescribed
vertex vi ∈ V,

iii) w is linked in D(V ∪ {w}) to exactly two prescribed vertices
vi , vj ∈ V with different square-free part.
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Extendability of Diophantine graphs

In some sense, Theorem 1 cannot be extended.

Proposition 1 (G. Batta, A. Pongrácz, H (202?))
Any three positive integers have only finitely many common neighbors
in N.

Proof of Proposition 1. If w is a neighbor of u1,u2,u3, then
(u1x + 1)(u2x + 1)(u3x + 1) = y2 with x = w and some y ∈ N.

Baker: there are only finitely many integer points on elliptic curves -
and we are done.

1,2,3 do not have common neighbors. This can be verified e.g. by
Magma, by results of Gebel, Pethő, Zimmer and Stroeker, Tzanakis.

Baker and Davenport: the only common neighbor of 1,3,8 is 120.
As 7 is also a neighbor of 120 in N, we cannot extend {1,3,7,8} by a
new vertex that is linked to 1,3,8 but not to 7.
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Extendability of Diophantine graphs - proof of Thm1

Theorem 1 is an immediate consequence of the following lemmas.

Lemma 1 (G. Batta, A. Pongrácz, H (202?))
Let v1, . . . , vn be different positive integers. Then there exist infinitely
many w ∈ N such that viw + 1 is not a square, and the square-free
parts of w and vi are different for all i = 1, . . . ,n.

Lemma 2 (G. Batta, A. Pongrácz, H (202?))
Let v1, . . . , vn be different positive integers, and let i ∈ {1, . . . ,n} be
fixed. Then there exist infinitely many w ∈ N such that viw + 1 is a
square, vjw + 1 is not a square for any j ∈ {1, . . . ,n} with j ̸= i , and the
square-free part of w is different from those of the vℓ (ℓ = 1, . . . ,n).
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Extendability of Diophantine graphs - proof of Thm1

Lemma 3 (G. Batta, A. Pongrácz, H (202?))
Let v1, . . . , vn be different positive integers and i , j ∈ {1, . . . ,n} distinct
indices such that the square-free parts of vi , vj are different.

Then there exist infinitely many w ∈ N such that:

viw + 1 and vjw + 1 are squares,

vℓw + 1 is not a square for ℓ ∈ {1, . . . ,n}, ℓ ̸= i , j ,

the square-free part of w is different from all those of the vm
(m = 1, . . . ,n).
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Extendability of Diophantine graphs - proof of Thm1

Main idea of the proof of Lemma 1., 2., and 3. In each case, the
proof is based on examining the cardinality of the solution sets of
various Diophantine equations.

Thus, in the Lemma 1., CRT implies that there are infinitely many
solutions.

In the case of Lemma 2., we compare the solution set of a system of
congruences to the solution set of finitely many Pell-equations.

In the proof of Lemma 3., we compare the solution set of a
Pell-equation to the solution set of finetely many simultaneous
Pell-equations.

Then we verify that the square-free parts of these solutions can come
from an infinite set.
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Extendability of Diophantine graphs - some corollaries

Corollary 1 (G. Batta, A. Pongrácz, H (202?))
Every finite graph has a Diophantine subdivision. In particular, every
finite graph is a minor of a Diophantine graph.

Sketch of the proof of Corollary 1. Let G be a finite graph with n
vertices.

According to Lemma 1 we can choose a set V of n positive integers
iteratively, each with a different square-free part, such that D(V ) is an
empty graph.

Then for any edge of G, we can extend V by a new number that is
linked to exactly the two endpoints of the edge in D(V ).

This can also be done iteratively: in each step, we choose a new
number that is not linked to any number other than the two endpoints
of the given edge.
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Lower bounds for the number of edges

Our next theorems concern the edge density in Diophantine graphs,
i.e. the number of edges e(D(V )) of D(V ) on n vertices.

In fact, we are interested in max
|V |=n

e(D(V )) (n ∈ N), or its order of

magnitude.

Theorem 1 implies the existence of graphs D(V ) with |V | = n and
e(D(V )) = Ω(n).

Dujella: the existence of such graphs with e(D(V )) = 6
π2 n log n +Θ(n).

In fact, Dujella proved this for D(VN) induced by VN := {1, . . . ,N}.
So the asymptotic edge density of D(VN) is 6

π2 logN.
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Lower bounds for the number of edges

Theorem 2 (G. Batta, A. Pongrácz, H (202?))
For any ε > 0 there exists an arbitrarily large n and a Diophantine
graph D(V ) with n vertices such that

e(D(V )) > n(log n)2 log 2−ε.

By this statement, we see that there are Diophatine graphs on n
vertices with edge density at least (log n)2 log 2−ε.
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Lower bounds for the number of edges - proof of Thm2

In the proof we need a classical assertion (also used by Dujella).

Write ω(d) for the number of different prime divisors of d ∈ N.

Lemma 4
Let S(a) be the number of solutions of x2 ≡ 1 (mod a).
Then S(a) ≤ 2ω(a)+1. More precisely,

1 if 2 ∤ a, then S(a) = 2ω(a),

2 if 2 | a but 4 ∤ a, then S(a) = 2ω(a)−1,

3 if 4 | a but 8 ∤ a, then S(a) = 2ω(a), and

4 if 8 | a, then S(a) = 2ω(a)+1.
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Lower bounds for the number of edges - proof of Thm2

By the approach of Dujella, we can estimate the degree of vertices in
D(VN).

Lemma 5 (G. Batta, A. Pongrácz, H (202?))
Let 1 ≤ a ≤ N. Then the degree of a in D(VN) is at most
8
√

N/a · 2ω(a).

As a simple consequence we get

Corollary 4 (G. Batta, A. Pongrácz, H (202?))
Let δ > 0, C > 1 and t ∈ N. Then for N large enough, the total degree
in the graph D(VN) of all numbers a in the interval
[N(logN)−tδ,N(logN)−(t−1)δ] such that ω(a) ≤ C log logN is at most
8N(logN)C log 2+δ/2.

The proofs are simple but technical, so we omit them.
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Lower bounds for the number of edges - proof of Thm2

Sketch of the proof of Theorem 2. Since the argument is rather
involved, we give an overview of our strategy.

We start out from VN , and leave out vertices of ’small’ degree to
increase the edge density Θ(logN) of the graph D(VN).

Clearly, the omission of a vertex v from a graph G increases the
average degree if and only if deg(v) is less than the edge density, that
is, half of the average degree in G.

Hence, the natural idea is to omit every vertex from D(VN) whose
degree is less than 6

π2 logN.

After this, only N/(logN)c1 vertices remains with some c1 > 0.
Thus in the graph obtained, the average degree has order of
magnitude Θ

(
(logN)1+c1

)
rather than logN.
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Lower bounds for the number of edges - proof of Thm2

Repeating the same process by omitting vertices with degree less than
(logN)1+c1 (approximately), the average degree increases to the order
of magnitude Θ

(
(logN)1+c2

)
with some c2 > c1.

Determining the limit c of the sequence c1, c2, . . ., we get
c = 2 log 2 − 1.

So the rough idea is to show that for any ε > 0, asymptotically 100% of
the Θ(N logN) edges survive if we omit vertices from D(VN) with
degree at most (logN)2 log 2−ε, and at the same time, only about
N(logN)1−2 log 2+ε vertices remain.

This yields a graph with edge density at least (logN)2 log 2−ε rather than
Θ(logN).
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Lower bounds for the number of edges - proof of Thm2

For this, we use a classical Hardy-Ramanujan type theorem.

The variant we need was found by Sathe and simplified by Selberg.

Let π(x , k) denote the number of positive integers a ≤ x with ω(a) = k .

Theorem A (Sathe-Selberg)
Let C > 1 be a fixed constant. Then for all x ≥ 3 we have∑

k>C log log x

π(x , k) ≤ x
log x

·
∑

k>C log log x

(log log x)k−1

(k − 1)!
.
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Upper bounds for the number of edges

Our first theorem into this direction is an immediate consequence of a
classical theorem of Turán.

Theorem 3 (G. Batta, A. Pongrácz, H (202?))
For any Diophantine graph D(V ) with |V | = n we have

e(D(V )) ≤ 3
8

n2.

Proof of Theorem 3. By the result of He, Togbé and Ziegler we know
that D(V ) cannot contain a K5. Thus the statement is a simple
consequence of Turán’s theorem with k = 5.

We note that Adrian Beker (a master student of Andrej Dujella)
informed us that combining bounds for the number of extensions of
Diophantine triples to quadruples by standard supersaturation results
for Turán’s theorem say, he can reduce the above upper bound to(1

3 + o(1)
)

n2.
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Upper bounds for the number of edges

We strongly suspect that max
|V |=n

e(D(V )) = o(n2) should hold.

To find a sub-linear upper estimate for the edge density of Diophantine
graphs, the following question is vital:

Is Kt ,t the subgraph of a Diophantine graph for all t ∈ N?

If the answer is positive, then it yields an infinite sequence of
Diophantine graphs with n vertices and at least n2/4 edges.

If the answer is negative, with counterexample t0 ∈ N, then by a
classical result of Kővári, Sós and Turán there is an O(n2−1/t0) upper
bound for the number of edges in Diophantine graphs on n vertices.
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Upper bounds for the number of edges

However, this problem seems to be out of reach with state-of-the-art
methods.

An open problem of Dujella asks whether already K3,3 is a
Diophantine graph or not.

Note that as a simple consequence of Theorem 1, we obtain that K2,t
is a Diophantine graph for any t .

By Proposition 1 we know that any three positive integers have only
finitely many common neighbors in N. However, it is not uniform!
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Upper bounds for the number of edges

We provide a stronger result in this direction.

However, for this we need to assume two deep conjectures related to
elliptic curves.

The first conjecture is due to Szpiro.

Conjecture 1 (Szpiro)
for all ε > 0 there are only finitely many elliptic curves E over Q
satisfying

log |DE |
logCE

≥ 6 + ε,

where DE is the minimal discriminant and CE is the conductor of E.
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Upper bounds for the number of edges

The second conjecture concerns the ranks of elliptic curves over Q.

For a long time, it has been widely believed that there is no absolute
bound for them.

However, recent heuristics of Park, Poonen, Voight and Wood
suggest that possibly the opposite is true.

This has been conjectured much earlier by Néron.

Conjecture 2 (Néron)
The ranks of elliptic curves over Q are uniformly bounded.
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Upper bounds for the number of edges

We shall also need a deep result of Hindry and Silverman.

Let S be a finite set of primes, and let ZS be the set of rationals such
that (in their primitive forms) all prime factors of their denominators
belong to S.

Write rE , DE and CE for the rank, discriminant and conductor,
respectively, of an elliptic curve E given in its minimal Weierstrass
model.

Theorem B (Hindry and Silverman)
There exists an absolute constant C0 such that the number of points
on E from Z2

S is at most

C
|S|+1+(1+rE )

log |DE |
log CE

0 .

G. Batta (University of Debrecen) On Diophantine graphs 9 May, 2025 26 / 39



Upper bounds for the number of edges

Our (strongly conditional) result into this direction is the following.

Theorem 4 (G. Batta, A. Pongrácz, H (202?))
Let a,b ∈ V, and suppose that D(V ) ∼= Kt ,t with t ≥ 1, such that a,b
belong to the same vertex class. Then, assuming Szpiro’s conjecture
and Néron’s conjecture, there exists a constant C = C(ω(ab(a − b)))
such that t < C.

One can see that that C is not at all absolute, but it depends ’only’ on
two vertices (integers).
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Upper bounds for the number of edges - proof of Thm4

Sketch of the proof of Theorem 3. We may assume that t ≥ 3.

Let c be an element from the vertex class of a,b, and d from the other
vertex class.

Then with some integer r we have

(ad + 1)(bd + 1)(cd + 1) = r2.

Do the following:
calculate the minimal model E0 of the elliptic curve E implied by
the above equation,
also the required invariants of E0,
get control on the prime factors of the denominators of the images
of the integer points E on E0.

Then our claim follows from Theorem B of Hindry and Silverman,
assuming the conjectures of Szpiro and Néron.

G. Batta (University of Debrecen) On Diophantine graphs 9 May, 2025 28 / 39



Chromatic number of Diophantine graphs

Finally, we study the chromatic number of Diophantine graphs.

As the clique number of Diophantine graphs is at most four, it is
plausible to ask whether all Diophantine graphs are four-colorable.

Our next result shows that it is not the case.

Theorem 5 (G. Batta, A. Pongrácz, H (202?))
Let V = {1, 3, 8, 120, 2, 4, 12, 20, 24, 6, 22, 92, 204, 420, 36, 78, 84, 140,
210, 360, 364, 560, 60, 14, 40, 136, 220, 312, 33, 9, 10, 52, 56, 728, 11, 48,
90, 168, 408, 840, 5, 7, 28, 30, 34, 35, 46, 70, 88, 132, 180, 240, 2184, 280,
16, 21, 32, 44, 156, 816, 380, 13, 39, 72, 80, 96, 462, 528, 1140, 2380, 23,
102, 105, 110, 152, 264, 456, 858, 2520, 1365}.
Then the graph D(V ) has chromatic number five.

This 80-element set is the smallest example we know, and it is minimal.
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Chromatic number of Diophantine graphs - proof of
Thm5

Sketch of the proof of Theorem 5. The verification of the statement
is done by an exhaustive case distinction.

The vertices are listed in a carefully chosen order, starting by the
Diophantine quadruple {1,3,8,120}.

At all other vertices, initially the set of all colors {0,1,2,3} is registered
as possibilities.

Whenever we assign a definite color to a vertex u, the algorithm
deletes that color as a possible one from the color sets at all the
neighbors of u.

The program iterates through the list of vertices, always making a case
distinction.
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Chromatic number of Diophantine graphs - proof of
Thm5

If a vertex is found that has no possible colors left, the program deletes
the corresponding copy of the graph.

Initially we have chosen the 1000 positive integers a where the largest
values of the function 2S(a)/

√
a are attained (see Lemmas 4 and 5).

The program verified that this graph is not four-colorable in less than a
second on an average PC.

To reduce the size, we omitted ’low-degree’ vertices from this
1000-vertex graph.

Once we reduced down to a graph with 119 vertices, a certain
refinement was needed.

Finally, we were left with the vertex set V given in the statement.
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Remarks and open problems - Hamiltonian paths and
cycles

As a(a + 2) + 1 = (a + 1)2, a,a + 2 ∈ VN are always linked.

So D(VN) is connected for N ≥ 8: any two odd and any two even
numbers are connected by paths of the form a,a + 2,a + 4, . . ., and 1
and 8 are also linked.

This almost yields a Hamiltonian path: start from the largest odd
number, walk down to 1, follow with 8,6,4,2,12, and then keep
upward. This path only avoids 10.

However, there is never a Hamiltonian cycle in D(VN): partitioning the
numbers in VN into (mod 4) residue classes, the elements of the
class of 2 are only linked to numbers divisible by 4.

So there is always an ’almost’ Hamiltonian path, and there is never a
Hamiltonian cycle in D(VN).
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Remarks and open problems - Hamiltonian paths and
cycles

Also, there is no Hamiltonian path in D(VN) if N ≡ 2,3 (mod 4).

In some small examples where N ≡ 0,1 (mod 4), say for
N = 17,32,33, there is no Hamiltonian paths in D(VN).

However, for other small values of N ≡ 0,1 (mod 4) such paths exist,
and it seems to be more and more probable as N gets larger.

There is a Hamiltonian path in D(VN) for infinitely many values of N,
e.g. for N = 16k2 (k ∈ N).

Problem 1 (G. Batta, A. Pongrácz, H (202?))
Is there an N0 ∈ N such that for all N ≥ N0, N ≡ 0,1 (mod 4) there is a
Hamiltonian path in D(VN)?
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Remarks and open problems - representability of
various graphs

Theorem 1 implies that every graph with maximum degree at most two
is Diophantine.

On the other hand, as K5 is not Diophantine, there exist
non-Diophantine graphs with maximum degree k for any k ≥ 4.

So the following question arises naturally.

Problem 2 (G. Batta, A. Pongrácz, H (202?))
Is it true that every finite graph with maximum degree at most three is
Diophantine? Or equivalently, is every finite 3-regular graph
Diophantine?

In fact, we expect a negative answer.

G. Batta (University of Debrecen) On Diophantine graphs 9 May, 2025 34 / 39



Remarks and open problems - representability of
various graphs

The smallest 3-regular graph is K4, which is Diophantine.

There are no 3-regular graphs on five vertices.
There are two 3-regular graphs on six vertices:

the complement of a 6-cycle, which is Diophantine, witnessed by
the representation {1,3,8,10,96,168},
the complete bipartite graph K3,3, which is the smallest open case
of the problem.

Besides the pyramid graph on five vertices, K3,3 is the smallest graph
G such that it is unknown whether G is Diophantine (Dujella).

Problem 3 (G. Batta, A. Pongrácz, H (202?))
Is the pyramid graph Diophantine?
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Remarks and open problems - representability of
various graphs

Another question related to Theorem 1 is the following.

Problem 4 (G. Batta, A. Pongrácz, H (202?))
Is it true that every Diophantine graph can be represented as D(V ),
with some V consisting of integers having pairwise different
square-free parts?
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Remarks and open problems - representability of
various graphs

As bipartite graphs play a crucial role, we propose the following
question (for which we strongly expect a negative answer).

Problem 5 (G. Batta, A. Pongrácz, H (202?))
Is Kt ,t a subgraph of a Diophantine graph for all t ∈ N?

Once again, K3,3 is the smallest open case of this problem.

We also propose a problem concerning the complexity of the language
of Diophantine graphs.

Problem 6 (G. Batta, A. Pongrácz, H (202?))
Is it decidable whether an input finite graph is Diophantine?

It is well-known that the solvability of Diophantine equations is
undecidable.

G. Batta (University of Debrecen) On Diophantine graphs 9 May, 2025 37 / 39



Remarks and open problems - chromatic numbers of
Diophantine graphs

Using an approach which is similar to that in the proof of Theorem 5,
we tried to find a Diophantine graph that is not five-colorable.

The complexity of this problem is orders of magnitude larger than that
of the four-colorable variant.

As the edge density (and the minimum degree) of a Diophantine graph
can be arbitrarily large, there is no obvious upper bound for the
chromatic number of these graphs.

So we suggest the following question.

Problem 7 (G. Batta, A. Pongrácz, H (202?))
Is there a Diophantine graph that is not five-colorable? More generally,
are there Diophantine graphs with arbitrarily large chromatic number?
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Thank you very much
for your attention!
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