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Introduction, Notations

Let K = Q(α) be a number field generated by a root α of a monic irreducible
polynomial F (x) ∈ Z[x ] of degree n and ZK its ring of integers.

Theorem

The ring ZK is a free-Z-module of rank n.

Any Z-basis (ω1, ω2, . . . , ωn) of the free Z-module ZK is called an integral
basis of K .

For any primitive element θ of ZK (that is θ ∈ ZK and K = Q(θ)), the
abelian group ZK/Z[θ] is finite, its order is called the index of Z[θ]
(shortly, the index of θ), and is denoted by (ZK : Z[θ]).
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Monogenic number field

Definition : Monogenic number field

A number field K is called monogenic if ZK admits a power integral basis of
the form (1, θ, . . . , θn−1) for some primitive element θ in ZK . This means that
ZK = Z[θ]. In this case, we call θ a generator of a power integral basis of K
(or shortly, a monogenerator).
If ZK has no power integral basis, we say that K is not monogenic.

Let
m(K ) = min{(ZK : Z[θ]), θ ∈ ZK , and K = Q(θ)}

be the minimal index of K .

K monogenic ⇔ (ZK : Z[θ]) = 1 for some primitive element θ in ZK .

K monogenic ⇔ m(K ) = 1.
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Familiar examples of monogenic number fields

Every quadratic number field K = Q(
√

d), with d ̸= 1 and square-free,
has ring of integers given by

ZK =

{
Z[
√

d ], if d ≡ 2, 3 (mod 4),
Z[ 1+

√
d

2 ], if d ≡ 1 (mod 4).

Thus, every quadratic number field is monogenic.

If K = Q(ξn) is any cyclotomic number field, where n ∈ Z and ξn is a
primitive nth root of unity, then ZK = Z[ξn].
So, every cyclotomic number field is monogenic.
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The first example of a non-monogenic number field

In 1878, R. Dedekind showed that the cubic number field K = Q(α), where α
is a root of x3 + x2 − 2x + 8 is not monogenic.

R. Dedekind, Über den Zusammenhang zwischen der Theorie der
Ideale und der Theorie der höheren Kongruenzen, Göttingen
Abhandlungen, 23, (1878), 1–23.

7 / 78



Question

How can one check the monogeneity of a given number field K and how to
construct a power integral basis for it when it is monogenic?
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Introduction, Notations

Monogenity of number fields is a classical problem of algebraic number
theory, going back to Dedekind, Hasse, and Hensel. In the last five decades,
there are extensive theoretical and computational results in the literature of
testing monogenity of number fields and constructing power integral bases.
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Approaches

There are several methods to study the monogenity of number fields, mainly :
• The resolution of index form equations :
I. Gaál, K. Győry, A. Pethő, M. Pohst and their collaborators, and others.
• Relative power integral bases :
S. Ahmed, M.-N. Gras, A. Hameed, S. M. Husnine, T. Nakahara...
• Dedekind’s criterion or its equivalent versions :
T. A. Gassert, L. Jones, S. K. Khanduja, T. Phillips, M. Sahmoudi...
• Prime ideal factorization :
L. Carlitz, N. Khan, T. Nakahara, H. Sekigueli...
• Prime ideal factorization via Newton polygon techniques :
H. Ben Yakkou, H. Choulli, J. Didi, L. El Fadil, T. A. Gassert, J. Guàrdia,
A.Jakhar, O. Kchit, J. Montes, S. Kuar, S. Kumar, E. Nart, H. Smith...
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Kronecker, Hensel

Let (1, ω2, . . . , ωn) be an arbitrary integral basis of K and
L(x) = x1 + x2ω2 + · · ·+ xnωn be the fundamental form defined by this basis,
where x = (x1, x2, . . . , xn) ∈ Zn. Then

DK/Q(L(x)) =
∏

1≤i<j≤n

(L(j)(x)− L(i)(x))2 = I(x2, . . . , xn)
2DK ,

where I(x2, . . . , xn) is an homogeneous form of degree n(n−1)
2 in n − 1

variables with coefficients in Z, called the index form corresponding to the
integral basis (1, ω2, . . . , ωn).
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Kronecker, Hensel

It follows that if θ = x1 + x2ω2 + · · ·+ xnωn ∈ ZK for some x1, . . . , xn in Z, then

(ZK : Z[θ]) = |I(x2, x3, . . . , xn)|.

Therefore, θ generates a power integral basis of K if and only if
(x2, x3, . . . , xn) satisfies the index form equation

I(x2, x3, . . . , xn) = ±1 (IFE)
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General effective finiteness results

In a series of his papers, Győry (1973, 1974, 1976, 1978a, 1978b) gave
general effective finiteness results for :
• monic polynomials with given discriminant (1973).
• integral elements in a number field with given discriminant/index (1973)
(independently, in case of discriminant, an ineffective finiteness result was
obtained by Birch and Merriman in 1972)
• He provided the first general algorithms for deciding whether K is
monogenic or not and for determining all power integral bases in ZK .
• He gave the first explicit upper bounds for the absolute values of the
solutions of an index form equation. These bounds imply, in an effective form,
that there are only finitely many generators of a power integral basis.
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General effective finiteness results

Definitions

• Two monic polynomials F (x),G(x) ∈ Z[x ] are Z-equivalent if
G(x) = F (x + a) for some a ∈ Z =⇒ D(F ) = D(G)
• Two integral elements θ1, θ2 ∈ ZK are Z-equivalent if θ2 = θ1 + a for some
a ∈ Z =⇒ DK/Q(θ1) = DK/Q(θ2) and (ZK : Z[θ1]) = (ZK : Z[θ2]).

Theorem (Győry 1973)

Let D be a non-zero rational integer. Apart from Z-equivalence, there are only
finitely many monic polynomials F (x) in Z[x ] with D(F ) = D, and a full set of
representatives of such polynomials F (x) can be effectively determined.
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General effective finiteness results

• In 1976, Győry proved that for given non-zero integer I, any index form
equation

I(x2, x3, . . . , xn) = I in x2, . . . , xn ∈ Z

has only finitely many integral solutions, and there is an effectively
computable C such that |xi | ≤ C for all 2 ≤ i ≤ n (quntitative version).
⇒ For I = ±1, decide effectively whether K is monogenic or not.
⇒ Up to translations by elements of Z, there are only finitely many θ such
that (ZK : Z[θ]) = 1.
⇒ Determine a full set of representative of inequivalent monogenerators of
ZK .
• In 1978, 1981, Győry provided several effective finiteness results
concerning the monogenity of relative extensions and relative power integral
bases of relative extensions.
Main steps in the proof : Reduction to systems of unit equations and
application of Baker’s method to these unit equations.
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General effective finiteness results

K.Győry, Sur les polynômes à coefficients entiers et de discriminant
donné, Acta Arithmetica 23(4) (1973), 419–426.

K.Győry, Sur les polynômes à coefficients entiers et de discriminant
donne III, Publ. Math. Debrecen. 23 (1976), 141–165.

K.Győry, On polynomials with integer coefficients and given discriminant,
IV, Publ. Math. Debrecen. 25 (1978), 155–167.

K.Győry, On discriminants and indices of integers of an algebraic
number field, J.Reine Angew. Math. 324(1981), 114–126.

K.Győry, Bounds for the solutions of norm form, discriminant form and
index form equations in finitely generated integral domains, Acta Math.
Hungar. 42 (1983), 45-80.
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Monogenic polynomials

For K = Q(α) with F (α) = 0, among the candidates which can generate a
power integral basis of ZK is α.

Definition : Monogenic polynomial

Let F (x) ∈ Z[x ] be a monic polynomial of degree n. The polynomial F (x) is
said to be monogenic if it irreducible and (1, α, . . . , αn−1) is a power integral
basis of ZK , where K = Q(α) and F (α) = 0.

• A number field K defined by a non-monogenic polynomial can be
monogenic.

Theorem : Dedekind’s criterion

Let p be a rational prime. If F (x) is the minimal polynomial for α, K = Q(α),
and F (x) ≡

∏t
i=1 ϕ

ei
i (x) (mod p), with ϕ1(x), . . . , ϕt(x) being irreducible

polynomials and distinct modulo p, then set

M(x) =
1
p
(F (x)−

t∏
i=1

ϕ
ei
i (x)),

then p does not divide the index (ZK : Z[α]) if and only if ϕi(x) does not
divide M(x) modulo p for every 1 ≤ i ≤ t with ei ≥ 2.
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The discriminant-index relation

For any primitive element θ ∈ ZK with minimal polynomial F (x), we have

D(F ) = DK/Q(θ) = (ZK : Z[θ])2DK ,

where DK is the discriminant K . This relation was established by Dedekind.
=⇒ The candidates rational primes to divide the index of θ ( in particular, the
index of α) (called singularities) are

SF = {p, rational prime, p2divides D(F )}

. • The discriminant D(F ) of F is calculable (resultant, formulas, programs
(e.g. Maple)).
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Some previous explicit works

There are a great number of results regarding the monogenity of several
classes of numbers fields. Let us recall some of them.
• In 1989, Gaál and Schulte gave an efficient method for the computation of
power integral bases of cubic number fields and performed it for all cubic
fields with discriminant in the range [−300, 3137].

I. Gaál and N. Schulte, Computing all power integral bases of cubic
number fields, Math. Comput., 53, (1989), 689–696.

• In a series of their papers (1991, 1993, 1994, 1996, 1997), Gaál, Pethő,
and Pohst gave efficient algorithms for several families of quartic number
fields with not too large discriminant.

I. Gaál, A. Pethő and M. Pohst, On the resolution of index form equations
in quartic number fields, J. Symbolic Comput,, 16(1993), 563–584.

Method of proof : reduction to cubic/quartic Thue equations, application of
Baker’s method , and efficient reduction and enumeration algorithms
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Some previous explicit works

• In 1992, by reducing index form equations to system of unit equations, and
using Baker’s method and efficient reduction and enumeration algorithms,
Gaál and Győry described an algorithm to solve index form equations in
quintic fields. As application of their results, they computed all generators of
power integral bases in totally real quintic fields with Galois group S5.

I. Gaál and K. Győry, Index form equations in quintic fields, Acta
Arithmetica , 89(4), (1999), 379-396.

• In 2004, Bilu, Gaál and Győry, provided algorithms for sextic number fields
and computed ( with a hard computation ) all generators of power integral
bases in a totally real sextic number field with Galois group S6.

Y. Bilu, I. Gaál and K. Győry, Index form equations in sextic fields : a
hard computation, Acta Arithmetica 115(1) (2004), 85–96.
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Some previous explicit works

• In 2017, Gaál and Remete showed that if m is a square free rational integer
such that m ≡ 2 or 3 (mod 4), then the octic number field K = Q(i, 4

√
m) is not

monogenic.

I. Gaál and L. Remete, Non-monogenity in a family of octic fields, Rocky
Mountain J. Math, 47(3), (2017), 817–824.

• In 2021, Gaál studied the multi-monogenity of sextic number fields defined
by trinomials of type x6 + ax3 + b.

I. Gaál, An experiment on the monogenity of a family of trinomials, JP
Journal of Algebra Number Theory Appl, 51(1), (2021), 97–111.
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Books

The following books give detailed surveys on discriminant and index form
theory and its applications, including related Diophantine equations and
monogenity of number fields.

K. Győry, Résultats effectifs sur la représentation des entiers par des
formes décomposables, Kingston, Canada, 1980.

W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers,
3rd edn., Springer Monographs in Mathematics (Springer-Verlag, Berlin,
2004).

J.-H. Evertse and K. Győry, Unit Equations in Diophantine Number
Theory, Cambridge Univ. Press (2015).

J.-H. Evertse and K. Győry, Discriminant Equations in Diophantine
Number Theory, Cambridge Univ. Press (2017).

I. Gaál, Diophantine Equations and Power Integral Bases, Theory and
algorithm, 2nd edn., Birkhäuser, (Boston, 2019).
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The fundamental method to test whether a number K field is monogenic or
not and determine all the power integral bases is to solve an index form
equation associated to an integral basis {1, ω1, . . . , ωn} of K , which is very
complicated for higher degree number fields. For a number field of degree n,
an index form equation I(x2, x3, . . . , xn) = ±1 is a Diophantine equation of
degree n(n−1)

2 with n − 1 variables. To decide the monogenity of K , we should
solve this equation which is not easy to achieve. Indeed, one must use
advanced techniques and methods in addition to computations using
powerful computers and algorithms. Actually, for n ≥ 7 we do not have any
general practical procedure to solve the corresponding index form equations.
To overcome part of this problem, we use the prime ideal factorization
method as our approach. We determine the prime ideals factorization by
using Newton polygon techniques. This method is efficient to investigate
indices and monogenity of several classes of number fields.
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The index of a number field

As defined by Dedekind, the index of a field K is

i(K ) = gcd {(ZK : Z[θ]) |K = Q(θ) and θ ∈ ZK}

Monogenic fields have both m(K ) = 1 and i(K ) = 1, but the condition
i(K ) = 1 is not sufficient for the monogenity of K . Also, if i(K ) > 1, then K is
not monogenic.

Definition : prime common index divisor

A rational prime p dividing i(K ) is called a prime common index divisor of K .

=⇒ A number field possessing a prime common index divisor is not
monogenic.
• p divides i(K ) ⇔ I(x2, . . . , xn) ≡ 0 (mod p) has solutions.
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Prime common index divisor/prime ideal factorization

Theorem

The ring ZK is a Dedekind domain.

Let

pZK =

g∏
j=1

p
ej
j

be the factorization of pZK into a product of powers of distinct prime ideals
ZK .
• ej = e(pj/p), j = 1, . . . , g is the ramification index of p at pj .
• fj = (ZK/pj : Z/pZ) is the residual degree of pj over p.
By Dedekind’s Theorem on decomposition of primes in ZK , we deduce the
following result which gives a necessary and sufficient condition for a rational
prime integer p to be a common divisor. This condition depends the form of
the factorization of pZK .

Lemma A

Let p be a rational prime and K be a number field. For every positive integer
f , let Lp(f ) be the number of distinct prime ideals of ZK lying above p with
residue degree f , and Np(f ) the number of monic irreducible polynomials of
Fp[x ] of degree f . Then p is a common index divisor of K if and only if
Lp(f ) > Np(f ), for some positive integer f .
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The numbers Np(f ) and Lp(f )

• To apply Lemma A, one needs to know the number Np(f ).

Np(f ) =
1
f

∑
d|f

µ(d)p
f
d ,

where µ is the Möbius function. This number was found by Gauss.
Examples :
✓ For f = 1, Np(1) = p for every rational prime p : the monic linear
irreducible polynomials in Fp[x ] are : x , x − 1, . . . , x − p + 1.
✓ For f = 2 and p = 2, N2(2) = 1 : the unique monic irreducible polynomial
of degree 2 in F2[x ] is x2 + x + 1.
✓ For p = 5, N5(2) = 10 and N5(3) = 40.
=⇒ The number Np(f ) increases according to f =⇒ It is more practical to
consider small values of f .
• To apply Lemma A, one needs to know the number Lp(f ) ⇔ Determine the
form of the factorization of pZK .
To factorize pZK , we will use Newton polygons techniques. This method was
introduced by Ore, and developed by Guàrdia, Montes and Nart.
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Newton polygons

Let p be a rational prime integer and νp the discrete valuation of Qp(x)
defined on Zp[x ] by

νp(
m∑

i=0

aix i) = min{νp(ai), 0 ≤ i ≤ m}.

Let ϕ(x) ∈ Z[x ] be a monic polynomial whose reduction modulo p is
irreducible. Any monic irreducible polynomial F (x) ∈ Z[x ] admits a unique
ϕ-adic development

F (x) = a0(x) + a1(x)ϕ(x) + · · ·+ an(x)ϕ(x)n,

with deg (ai(x)) < deg (ϕ(x)). For every 0 ≤ i ≤ n, let ui = νp(ai(x)).

Definition

• The ϕ-Newton polygon of F (x) is the lower boundary convex envelope of
the set of points {(i, ui) , 0 ≤ i ≤ n , ai(x) ̸= 0} in the Euclidean plane, which
we denote by Nϕ(F ).
• The polygon determined by the sides of negative slopes of Nϕ(F ) is called
the ϕ-principal Newton polygon of F (x) and will be denoted by N+

ϕ (F ).
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Example A

Consider the monic irreducible polynomial F (x) = x4 − 4x3 + 12x2 − 8x + 95.
Let p = 2. The ϕ-adic development of F (x) is

F (x) = ϕ(x)4 + 6ϕ(x)2 + 8ϕ(x) + 96.

Here, we have :
a0 = 96, a1 = 8, a2 = 6, a3 = 0, a4 = 1
µ0 = 5, µ1 = 3, µ2 = 1, µ3 = ∞, µ4 = 0.
Thus, N+

ϕ (F ) = S1 + S2 with respect to ν2 has two sides, with d(S1) = 2,
d(S2) = 1, λ1 = −2 and λ2 = −1

2 .

1 2 3 4

1

2

3

4

5

S1

S2

Figure – The ϕ-principal Newton polygon N+
ϕ (F ) with respect to ν2.
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Residual polynomials

Let Fϕ be the finite field Z[x ]/(p, ϕ(x)) ≃ Fp[x ]/(ϕ(x)).
• We attach to any abscissa 0 ≤ i ≤ l(N+

ϕ (F )) the following residual
coefficient ci ∈ Fϕ :

ci =

 0, if (i, ui) lies strictly above N+
ϕ (F ),

ai(x)
pui

(mod (p, ϕ(x))), if (i, ui) lies on N+
ϕ (F ).

• We attach to any side S of N+
ϕ (F ) of degree d(S) = l(S)

e(S)
the following

residual polynomial :

Rλ(F )(y) = cs + cs+ey + · · ·+ cs+(d−1)eyd−1 + cs+deyd ∈ Fϕ[y ],

where s is the abscissa of the initial point of S (d = d(S) and e = e(S)).
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p-regularity

Let K = Q(α) with F (α) = 0.
• Kummer : Factorization of pZK when p ∤ D(F ).
• Dedekind : Factorization of pZK when p ∤ (ZK : Z[α]).
• Ore : Factorization of pZK when F (x) is p-regular.

Definitions

1 The polynomial F (x) is ϕ-regular with respect to p if for each side S of
N+

ϕ (F ), the associated residual polynomial Rλ(F )(y) is separable in
Fϕ[y ].

2 The polynomial F (x) is said to be p-regular if F (x) is ϕi -regular for every
1 ≤ i ≤ t , where F (x) =

∏t
i=1 ϕi

li is the factorization of F (x) into a
product of powers of distinct irreducible polynomials in Fp[x ].

3 The ϕ-index of F (x), denoted by indϕ(F ), is deg(ϕ) times the number of
points with natural integer coordinates that lie below or on the polygon
N+

ϕ (F ), strictly above the horizontal axis and strictly beyond the vertical
axis.
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Ore’s Theorem

• Let F (x) =
∏t

i=1 ϕi(x)
li be the factorization of F (x) into a product of powers

of distinct irreducible polynomials in Fp[x ].
• For every i = 1, . . . , t , let N+

ϕi
(F ) = Si1 + · · ·+ Siri .

• For every j = 1, . . . , ri , let Rλij (F )(y) =
∏sij

s=1 ψ
nijs
ijs (y) be the factorization of

Rλij (F )(y) in Fϕi [y ].

Theorem A : Ore’s Theorem

With the notation as in above, we have :

1

νp((ZK : Z[θ])) ≥
t∑

i=1

indϕi (F ).

Moreover, the equality holds if F (x) is p-regular.

2 If F (x) is p-regular, then

pZK =
t∏

i=1

ri∏
j=1

sij∏
s=1

p
eij
ijs ,

where eij is the ramification index of the side Sij and
fijs = deg(ϕi)× deg(ψijs) is the residue degree of pijs over p.
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Example A

1 2 3 4

1
2
3
4
5 S1

S2

Figure – The ϕ-principal Newton polygon N+
ϕ (F ) with respect to ν2.

• Reducing modulo 2, we get F (x) ≡ ϕ(x)4 (mod 2), where ϕ = x − 1.
In this case, we have D(F ) = 211 · 33 · 3457 and M(x) = (x − 1)2

⇒ Neither Dedekind’s nor Kummer’s factrization theorem can be applied to
factorize 2ZK .
• The residual polynomials attached to the sides of N+

ϕ (F ) are
Rλ1(F )(y) = 1 + y + y2 and Rλ2(F )(y) = 1 + y , which are irreducible
polynomials in Fϕ[y ] ≃ F2[y ]. Thus, F (x) is ϕ-regular, hence it is 2-regular.
By Ore’s Theorem (Theorem A),

ν2((ZK : Z[α])) = indϕ(F ) = deg(ϕ)× 4 = 4

and
2ZK = p1p

2
2,

with respective residue degrees f (p1/2) = 2 and f (p2/2) = 1.
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Integral bases of number fields via Newton polygons

Newton polygons (the Montes algorithm) is an efficient tool compute
discriminants and to determine p-integral bases of number fields which
allows us to compute an integral basis. For every 1 ≤ i ≤ t , 1 ≤ j ≤ li , and
0 ≤ k < mi , where mi = deg(ϕi), let qi,j(x) be the quotient of the Euclidean
division of F (x) by ϕj

i(x), yi,j the ordinate of N+
ϕi
(F ) of abscissa j , and

αi,j,k = qi,j(α)α
k . The following Theorem gives explicitly a p-integral basis of

K when the polynomial F (x) is p-regular.

Theorem : Guàrdia, Montes and Nart, 2015

Under the above notations, if F (x) is p-regular, then the family

{ αi,j,k

p⌊yi,j⌋
, 1 ≤ i ≤ t , 1 ≤ j < li , 0 ≤ k < mi}

is a p-integral basis of K .

P. Llorente, E. Nart and N. Vila, Discriminants of number fields defined
by trinomials Acta Arithmetica, 1948.

L. Remete, Integral bases of pure fields with square free parameter,
Stud. Sci. Math. Hung, 57(1), (2020), 91–115.

S. Kaur and S.K. Khanduja, Discriminant and integral basis of sextic
fields defined by x6 + ax + b, Commun. in Algebra, 50(10), (2022),
4401–4436.

39 / 78



References on Newton polygons techniques for Number fields

O. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper,
Math. Ann. 99 (1928), 84–117.

J. Montes and E. Nart, On theorem of Ore, Journal of Algebra 146(2)
(1992), 318–334.

J. Guàrdia, J. Montes and E. Nart, Higher Newton polygons in the
computation of discriminants and prime ideal decomposition in number
fields, Journal de théorie des nombres de Bordeaux 23(7) (2011),
667–669.

J. Guàrdia, J. Montes and E. Nart, Newton polygons of higher order in
algebraic number theory, Tran. Math. Soc. American 364(1), ( 2012),
361–416.
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Monogenity of certain pure number fields

Let K = Q(α) be a pure number field generated by a root α of a monic
irreducible polynomial F (x) = xn − m, ZK its ring of integers. There are
several important and basic works concerning these fields. Let recall here
some of them.
• In 2014, S. Ahmad, T, Nakahara and S.M. Husnine proved that if m is a
square free rational integer such that m ≡ 2, 3 (mod 4) and m ̸≡ ±1 (mod 9),
then the sextic pure field K = Q( 6

√
m) is monogenic.

S. Ahmad, T, Nakahara and S.M. Husnine, Power integral bases for
certain pure sextic fields, I. J. Number Theory, 10(8), (2014), 2257–2265.

• In 2017, Gassert studied the monogenity of the polynomial xn − m (The
integrally closedness of Z[α]).

T. A. Gassert, A note on the monogeneity of power maps, Albanian J.
Math, 11(2017), 3–12.

• In 2017, Gaál and Remete answered completely to the problem of
monogenity of pure number fields K = Q( n

√
m), where m ̸= ±1 is a square

free rational integer and 3 ≤ n ≤ 9.

I. Gaál and L. Remete, Power integral bases and monogenity of pure
fields, J. of Number Theory, 173, (2017), 129–146.
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Monogenity of certain pure number fields

• Between 2020-2022, El Fadil based on prime ideal factorization via Newton
polygon techniques, he studied the monogenity of several pure number fields
of fixed degrees, namely of degrees 6, 12, 18, 20, 24...

L. El Fadil, On Power integral bases for certain pure sextic fields, Bol.
Soc. Paran. Math, (2020), doi :10.5269/bspm.42373.

L. El Fadil, On power integral basis for certain pure number fields
defined by x36 − m, Stud. Sci. Math. Hung, 58(3), (2021).

L. El Fadil, On power integral bases for certain pure number fields
defined by x18 − m, Commentationes Mathematicae Universitatis
Carolinae, (2022).
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Monogenity of pure number fields of degrees pr

The majority of available works regarding the problem of monogenity of K
consider only pure number fields of small fixed degrees n, namely 3 ≤ n ≤ 9.
• In 2021, Ben Yakkou and El Fadil studied the monogenity of certain pure
number fields of degree pr .

H. Ben Yakkou and L. El Fadil, On monogenity of certain pure number
fields defined by xpr

− m, I. J. of Number theory, 17 (10) (2021),
2235–2242. DOI : https ://doi.org/10.1142/S1793042121500858.

Based on prime ideal factorization via Newton polygon techniques, mainly,
Ore’s Theorem (Theorem A), Lemma A (prime common index divisor), and
using some technical results such as the following lemma which allows to
evaluate the p-adic valuation of the Binomial coefficient :

Lemma B

Let p be a rational prime integer and r be a positive integer. Then

νp

((
pr

j

))
= r − νp(j)

for any integer j = 1, . . . , pr − 1.

we obtain some new results on the monognity of these pure number fields.
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Monogenity of pure number fields of degrees pr

The following theorem is an improvement of Gassert’s result for n = pr .
Recall also that Gassert used Dedekind’s criterion to show her result, but we
used the Index Theorem of Ore to prove our result.

Theorem 1 (Ben Yakkou and El Fadil, 2021 )

Let n = pr , with p a prime rational integer, and r a positive integer, then Z[α]
is the ring of integers of K if and only if νp(mp − m) = 1.

Notice that by the above theorem, if νp(mp − m) ≥ 2, then Z[α] is not the ring
of integers of K . Henceforth, It can not decide on the monogenity of K . The
following theorem gives a partial answer.

Theorem 2 (Ben Yakkou and El Fadil, 2021 )

For n = pr , with p an odd prime integer not dividing m. If
mp−1 ≡ 1 (mod pp+1) and r ≥ p, then K is not monogenic.
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Proof of Theorem 2

We proved that p is a common index divisor of K .
• F (x) = (x − m)pr

in Fp[x ].
• Using Binomial Theorem, we get

F (x) = (x − m)pr
+

pr−1∑
j=1

(
pr

j

)
mpr−j(x − m)j + mpr

− m.

Let ϕ = x − m and ν = νp(mpr
− m).

• ν = νp(mpr
− m) = νp(mp−1 − 1).

• ν > p and r ≥ p + Applying Lemma B ⇒

N+
ϕ (F ) = S1 + · · ·+ St−p+1 + · · ·+ St

has t-distinct sides of degree 1 each, with t ≥ p + 1.
⇒ F(x) is p-regular + Applying Ore’s Theorem ⇒ Lp(1) ≥ p + 1. But
Np(1) = p + Applying Lemma A ⇒ p divides i(K ).
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The case p = 2

The case p = 2 is different to the case when p is odd ; the first side of N+
ϕ (F )

can have degree 2 which can induces non separable residual polynomial.

Theorem 3 (Ben Yakkou and El Fadil, 2021 )

Assume that n = 2r (p=2).

1 If r = 2 and m ≡ 1 (mod 16), then the pure quartic number field K is not
monogenic.

2 If r ≥ 3 and m ≡ 1 (mod 32), then K is not monogenic.

This result is partially complete the work of A. Hameed, T. Nakahara, S. M.
Husnine, and S. Ahmed when they proved that for n = 2r , if m ≡ 2 or
3 (mod 4), then Z[α] is the ring of integers of K for every natural integer r .

A. Hameed, T. Nakahara, S. M. Husnine, and S. Ahmed, On existence of
canonical number system in certain classes of pure algebraic number
fields, J. Prime Res. Math, 7 (2011), 19–24.
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Monogenity of pure number fields of degrees 2r · 5s

Our second work is about pure number fields defined by x2r ·5s
− m, where r

and s are two positive integers.

H. Ben Yakkou, A. Chillali and L. El Fadil, On Power integral bases for
certain pure number fields defined by x2r ·5s

− m, Comm. in Algebra,
49(7), (2021), 2916–2926.

• We have extended our knowledge about N+
ϕ (F ), the ϕ-principal Newton

polygon, where ϕ is a monic irreducible factor modulo a given rational prime
p of an irreducible polynomial of type xn − m.
• We have used the technique of ϕ-admissible developments (Guàrdia,
Montes and Nart).
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ϕ-admissible developments

Let

F (x) =
n∑

j=0

Aj(x)ϕ(x)j , Aj(x) ∈ Zp[x ],

be a ϕ-development of F (x), not necessarily the ϕ−adic one. Take
ωj = νp(Aj(x)), for all 0 ≤ j ≤ n. Let N be the principal polygon of the set of
points {(j, ωj) | 0 ≤ j ≤ n, ωj ̸= ∞}. To any 0 ≤ j ≤ n, we attach a residual
coefficient as follow :

c
′
j =

 0, if (j, ωj) lies strictly above N,
Aj(x)
pωj

(mod (p, ϕ(x))), if (j, ωj) lies on N.

Moreover, for any side S of N with slope λ, we define the residual polynomial
associated to S and noted R

′
λ(F )(y) ( similar to the residual polynomial

Rλ(F )(y) defined from the ϕ-adic development). We say that a
ϕ-development is admissible if c

′
j ̸= 0 for each abscissa j of a vertex of N.

• c
′
j ̸= 0 if and only if ϕ(x) ∤

(
Aj(x)
pωj

)
.

Lemma C : Guàrdia, Montes and Nart, 2012

If a ϕ-development of F (x) is admissible, then N+
ϕ (F ) = N and c

′
j = cj . In

particular, for any segment S of N we have R
′
λ(F )(y) = Rλ(F )(y).
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Monogenity of pure number fields of degrees 2r · 5s

We have proved the following technical lemma.

Lemma D

Let k ≥ 1 be the highest power of a prime p dividing a positive integer
n = u.pk and m be an integer not divisible by p such that the monic
polynomial F (x) = xn − m ∈ Z[x ] is irreducible over Q. Then the following
hold :

1 If νp(mpk
− m) = 1, then for any irreducible factor ϕ(x) of F (x) in Fp[x ],

N+
ϕ (F ) = S has a single side of height 1.

2 If ϕ(x) is a monic irreducible factor of F (x) in Fp[x ] of degree 1. Let
Q(x) ∈ Z[x ] and a ∈ Z be respectively the quotient and remainder upon
the Euclidean division of xu − m by ϕ(x). Let

ω0 = νp(mpk
− m +

∑pk

j=1

(
pk

j

)
mpk−jaj). Then N+

ϕ (F ) is the lower

boundary convex envelope of the set of points
{(0, ω0)} ∪ {(pj , k − j) | 0 ≤ j ≤ k} in the Euclidean plane. In particular
ω0 ≥ min{νp(mpk

− m), k + 1}.
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Monogenity of pure number fields of degrees 2r · 5s

Theorem 4, Ben Yakkou and El Fadil, 2021

Under the notation as in above, Z[α] is the ring of integers of K if and only if
m ̸≡ 1 (mod 4) and m ̸≡ 1, 7, 18, 24 (mod 25). In this case K is monogenic
and α generates a power integral basis of ZK .

Theorem 5, Ben Yakkou and El Fadil, 2021

Under the above hypothesis. If one of the following conditions holds :

1 r = 2 and m ≡ 1 (mod 16).

2 r ≥ 3 and m ≡ 1 (mod 32).

3 r = 1 , s ≥ 2 and m ≡ ±1 (mod 125).

4 r ≥ 2 and m ≡ 1 (mod 25).

Then K is not monogenic.
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Monogenity of pure number fields of degrees 2r · 3k · 7s

Theorem 6, Ben Yakkou and Didi, 2023

The ring Z[α] is the ring of integers of K if and only if m is square-free,
m ̸≡ 1 (mod 4), m ̸≡ ±1 (mod 9) and m ̸∈ {±1,±18,±19} (mod 49). In this
case, K is monogenic and α generates a power integral of ZK .

Theorem 7, Ben Yakkou and Didi, 2023

if one of the following conditions holds :

1 m ≡ 1 (mod 4).
2 label=()m ≡ 1 (mod 9).

lbbel=()r ≥ 2 and m ≡ −1 (mod 9).
lcbel=()r = 1 and m ≡ −1 (mod 81).

3 label=()m ≡ 1 (mod 49).
lbbel=()r = 1, s ≥ 7 and m ≡ −1 (mod 78).
lcbel=()r ≥ 2, s ≥ 3 and m ≡ −1 (mod 74),

then K is not monogenic.
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Corollary, Ben Yakkou and Didi, 2023

Let K be a pure number field generated by a complex root of a monic
irreducible polynomial x2r ·3k ·7s

− mt , with m ̸= ±1 a square-free rational
integer and t a positive integer which is coprime to 42. Then the following
hold.

1 If m ̸≡ 1 (mod 4), m ̸≡ ±1 (mod 9) and m ̸∈ {±1,±18,±19} (mod 49),
then K is monogenic.

2 If m ≡ 1 (mod 4), then K is not monogenic.
3 If

label=()m ≡ 1 (mod 9).
lbbel=()r ≥ 2 and m ≡ −1 (mod 9).
lcbel=()r = 1 and m ≡ −1 (mod 81),

then K is not monogenic.
4 If

label=()m ≡ 1 (mod 49).
lbbel=()r = 1, s ≥ 7 and m ≡ −1 (mod 78).
lcbel=()r ≥ 2, s ≥ 3 and m ≡ −1 (mod 74),

then K is not monogenic.
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Monogenity of certain number fields defined by trinomials

Let K = Q(α) be a number field generated by a root α of a monic irreducible
trinomial of type F (x) = xn + axm + b ∈ Z[x ] and ZK its ring of integers.
• In 2016, Jhorar and Khanduja studied the monogenity of the polynomial
xn + ax + b.

B. Jhorar and S.K. Khanduja, On power basis of a class of algebraic
number fields, I. J. Number Theory , 12(8), (2016), 2317–2321.

• In 2021, Jones and White identified new infinite families of monogenic
trinomials with non-squarefree discriminant.

L. Jones and D. White, Monogenic trinomials with non-squarefree
discriminant, International Journal of Mathematics, doi :
10.1142/S0129167X21500890, (2021).

In 2022, Ben Yakkou and El Fadil studied the non monogenity of number
fields defined by xn + ax + b.

H. Ben Yakkou and L. El Fadil, On monogenity of certain pure number
fields defined by trinomials, Funct. et Approx. Comment. Math, (2022).
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Non-monogenic quantic number fields defined by x5 + ax + b

Theorem 8 : Ben Yakkou and El Fadil, 2022

Let K = Q(α), F (α) = 0, F (x) = x5 + ax + b

1 a ≡ 1 (mod 4) and b ≡ 2 (mod 4).

2 (a, b) ∈ {(7, 8), (15, 0)} (mod 16).

3 (a, b) ∈ {(3, 20), (19, 4)} (mod 32).

4 (a, b) ∈ {(3, 4), (19, 20), (35, 36), (51, 52)} (mod 64).

5 (a, b) ∈ {(3, 12), (19, 28)} (mod 32).

6 (a, b) ∈ {(3, 60), (19, 44), (35, 28), (51, 12)} (mod 64).

7 a ≡ 4 (mod 8) and b ≡ 0 (mod 8),

then K is not monogenic.

In every case, we have proved that 2 divides i(K ) .
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Non-monogenic sextic number fields defined by x6 + ax + b

Theorem 9 : Ben Yakkou and El Fadil, 2022

Let K = Q(α), F (α) = 0, F (x) = x6 + ax + b

1 a ≡ 0 (mod 8) and b ≡ 7 (mod 8).

2 a = 2 (mod 4), b ≡ 1 (mod 4) and ν2(1 + a + b) = 2ν2(a + 6). In
particular if (a, b) ∈ {(6, 9), (14, 1), (22, 25), (30, 17)} (mod 64).

3 a ≡ 0 (mod 8) and b ≡ 3 (mod 8).

4 a ≡ 0 (mod 9) and b ≡ −1 (mod 9),

then K is not monogenic.

• In (1)(2)(3), we have 2 divides i(K ). But in (4), we have 3 divides i(K ).
Remark : Independently, in 2022, Jakhar and Kumar proved that if one of the
conditions (1) or (4) holds, then K is monogenic.
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Some fundamental results about the index of a number field

Recall that

i(K ) = gcd {(ZK : Z[θ]) |K = Q(θ) and θ ∈ ZK}.

• 1878, Dedekind : p | i(K ) ⇔ Lp(f ) > Np(f ) for some positive integer f
(Lemma A).
• 1913, Żyliński : p | i(K ) =⇒ p < n.
• 1926, Ore : νp(i(K )) is not in general determined by the form of the
factorization of pZK .
• 1930, Engstrom : Confirmed Ore’s conjecture (example n = 8) + Explicit
formulas for νp(i(K )) in certain general cases.
=⇒ For n ≤ 7, in the majority of cases, νp(i(K )) is determined by the form of
the factorization of pZK (tables).
• 1982, Śliwa : νp(i(K )) when p is unramified in K .
• 1984, Nart : gave νp(i(K )) in totally case (arithmetic invariants)+ Extend
some of Engstrom’s formulas + Confirmed Ore’s conjecture in a more general
case.
One of the unsolved problems in Algebraic Number Theory is determining the
indices ( highest powers of primes dividing indices) in infinite families of
number fields. This problem is referred to as Problem 22 in Narkwikz’s book.
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Some explicit works about indices in number fields defined by trinomials

• 1983, Llorente and Nart for F (x) = x3 + ax + b.
• 2017, Davis and Spearman for F (x) = x4 + ax + b.
• 2022, Gaál and El Fadil for F (x) = x4 + ax2 + b.
• 2022, Ben Yakkou for F (x) = x5 + ax3 + b (independently, El Fadil).
• 2022, Jakhar, Kaur and Kumar for F (x) = x5 + ax + b.
• 2022, El Fadil, Kchit for F (x) = x7 + ax3 + b.
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The index of the septic number field defined by x7 + ax5 + b

In 2023, Ben Yakkou completely characterized indices in number fields
defined by trinomials of type x7 + ax5 + b. More precisely, he proved the
following result.

Theorem 10 : (Ben Yakkou, 2023)

Let K = Q(θ) be a number field with θ a root of a monic irreducible
polynomial F (x) = x7 + ax5 + b ∈ Z[x ]. Then i(K ) ∈ {1, 2, 4}.

To prove the above result :
• For any odd rational p, p is not a common index divisor of K ; p does not
divide i(K ).
• For p = 2, in every case, ν2(i(K )) is given.
▷ Żyliński’s condition + deg(K ) = 7 =⇒ If p | i(K ), then p < 7 =⇒ p = 2, 3, 5
▷ the index-discriminant relation :

νp(D(η)) = 2νp((ZK : Z[η])) + νp(DK ),

and the discriminant formula

∆(F ) = −b4(77b2 + 22 × 55a7).

=⇒ For p = 3, if 3 divides i(K ), then

(a, b) ∈ {(1, 0), (−1, 0), (1, 1), (−1, 1), (0, 0)} (mod 3).

▷ if p divides both a and b, then νp(a) < 2 or νp(b) < 7. 60 / 78



The index of the septic number field defined by x7 + ax5 + b

Case Conditions Factorization of 3AK

A1 a ≡ 1 (mod 3), b ≡ 0 (mod 3) and 5 ∤ ν3(b) [15, 2]
A2 a ≡ 1 (mod 3) and 5 | ν3(b) [1, 2, 4]
A3 a ≡ −1 (mod 3), b ≡ 0 (mod 3) and 5 ∤ ν3(b) [1, 1, 15]
A4 a ≡ −1 (mod 3) and 5 | ν3(b) [1, 1, 1, 4]
A5 a ≡ 1 (mod 3), b ≡ 1 (mod 3) [1, 1, 2, 3], [12, 2, 3] or

[2, 2, 3]
A6 a ≡ −1 (mod 3), b ≡ 1 (mod 3) [7]
A7 7ν3(a) > 2ν3(b) and ν3(b) ∈ {1, 2, 3, 4, 5, 6} [17]

A8 ν3(a) = 1, ν3(b) ≥ 4 and 5 ∤ ν3(b) [12, 15]

A9 ν3(a) = 1 and 5 | ν3(b) [1, 12, 4]

Table – The factorization of 3AK

=⇒ Lemma A+ the above table, 3 does not divide i(K ).
+ similarly, we show that 5 does not divide i(K ).
=⇒ The unique rational prime which can divides i(K ) is 2.
=⇒ i(K ) = 2ν2(i(K )).
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The index of the septic number field defined by x7 + ax5 + b

Case Conditions 2AK i(K )

C1 a ≡ 1 (mod 2) and b ≡ 1 (mod 2) [21, 51] 1
C2 a ≡ 0 (mod 2) and b ≡ 1 (mod 2) [1, 3, 3] 1
C3 7ν2(a) > 2ν2(b) and ν2(b) ∈ {1, 2, 3, 4, 5, 6} [17] 1
C4 ν2(a) = 1, ν2(b) ≥ 4 and 5 ∤ ν2(b) [12, 15] 1
C5 ν2(a) = 1 and 5 | ν2(b) [1, 12, 4] 1
C6 a ≡ 3 (mod 8), b ≡ 0 (mod 8), and 5 ∤ ν2(b) [15, 2] 1
C7 a ≡ 3 (mod 8), b ≡ 0 (mod 8), and 5 | ν2(b) [1, 2, 4] 1
C8 a ≡ 7 (mod 8), b ≡ 4 (mod 8) [2, 15] 1
C9 a ≡ 3 (mod 8), b ≡ 4 (mod 8) [1, 1, 15] 2

C10 a ≡ 7 (mod 8), b ≡ 0 (mod 8), and 5 ∤ ν2(b) [1, 1, 15] 2
C11 a ≡ 7 (mod 8), b ≡ 0 (mod 8), and 5 | ν2(b) [1, 1, 1, 4] 2
C12 a ≡ 3 (mod 4) and b ≡ 2 (mod 4) [12, 15] 1
C13 a ≡ 1 (mod 4), b ≡ 0 (mod 4) and 5 ∤ ν2(b) [12, 15] 1
C14 a ≡ 1 (mod 4), b ≡ 0 (mod 4) and 5 | ν2(b) [1, 12, 4] 1
C15 (a, b) ∈ {(1, 10), (9, 2), (1, 6), (9, 14)} (mod 16) [12, 15] 1
C16 (a, b) ∈ {(1, 18), (17, 2), (1, 14), (17, 30)} (mod 32) [2, 15] 1
C17 (a, b) ∈ {(1, 2), (17, 18), (1, 30), (17, 14)} (mod 32) [1, 1, 15] 2 or 4
C18 (a, b) ∈ {(5, 2), (5, 14), (13, 6), (13, 10)} (mod 16) [15, 15] 1

Table – The factorization of 2AK and the value of i(K ). 62 / 78



The index of the octic number field defined by x8 + ax + b

Theorem 11 : Ben Yakkou and Boudine, 2023 (to appear in Acta. Math.
Hungar)

Let K = Q(α), F (α) = 0, F (x) = x8 + ax + b. Then i(K ) = 2m for some
natural integer m.
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The index of the octic number field defined by x8 + ax + b

For t ∈ Z, tp = t
pνp (t) .

Theorem 12 : Ben Yakkou and Boudine, 2023 (to appear in Acta. Math.
Hungar)

Let K = Q(α), F (α) = 0, F (x) = x8 + ax + b such that
(a, b) ̸≡ (32, 16) (mod 64) and (a, b) ̸∈ {(0, 112), (64, 112)} (mod 128). When
a ≡ 8 (mod 16) and b ≡ 7 (mod 16), let
ω = ν2(b7 − 77a8

2),A
1
a,b = b(b7 − 77a8

2)2 + 7a2(77a8
2 − b7 + b6a2),

A2
a,b =

(
b(b7 − 77a8

2)2 + 7a2(77a8
2 − b7 + b6a2)

)
2 + b4(245a2 − 14b),

Ba,b = (b7 − 77a8
2)2 + 73 · a2

2 · b6.
Then 2 divides i(K ) if and only if one of the following conditions hold :

1 a ≡ 4 (mod 8) and b ≡ 3 (mod 8).

2 (a, b) ∈ {(0, 31), (16, 15)} (mod 32).

3 a ≡ 8 (mod 16), b ≡ 7 (mod 32) andω is odd.

4 a ≡ 8 (mod 16), b ≡ −9 (mod 32) and A1
a,b ≡ 0 (mod 4).

5 a ≡ 8 (mod 16), b ≡ −9 (mod 32), A1
a,b ≡ 2 (mod 4) and A2

a,b ≡ 0 (mod 4).

6 ω ≥ 6 is even and Ba,b ≡ 2 (mod 4).

7 ω ≥ 6 is even and Ba,b ≡ 0 (mod 8).
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Newton polygons of higher order

When the polynomial F (x) is not p-regular ; certain factors of F (x) provided
by Hensel’s factorization and refined by Residual Polynomial Theorem of first
order ; some residual polynomial Rλij (F )(y) is not irreducible in Qp(x), then
Guárdia, Montes, and Nart, introduced in 2012 an efficient algorithm to
factorize completely the principal ideal pZK . They defined the Newton
polygon of order r and they proved an extension of the theorem of the
product, theorem of the polygon, theorem of the residual polynomial and
theorem of index in order r .

J. Guàrdia, J. Montes and E. Nart, Newton polygons of higher order in
algebraic number theory, Tran. Math. Soc. American 364(1), ( 2012),
361–416.

• To investigate some cases, we have analyzed Newton polygons of second
order and we have used a key polynomial of a general form
x2 − ρx − σ ∈ Zp[x ].
• To make ourselves in the regular case in C3-C7, we have replaced the
factor x − 1 of F (x) modulo 2 by x − s where s ∈ Z2 has the form
s = 2r − E(a, b) for an adequate r and E(a, b) ∈ Z2 with ν2(s) = 0. This
method (called refinement) was used previously by Guàrdia, Khanduja,
Llorente, Montes, Nart, Vila, and others in different contexts...
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An upper bound of the index i(K )

Remark that ν2(ZK : Z[α]) ≤ ν2(i(K )).

Case Conditions ν2(ZK : Z[θ]) ν2(i(K ))
C1 a ≡ 4 (mod 8) and b ≡ 3 (mod 8) 5 ≤ 5
C2 (a, b) ∈ {(0, 31), (16, 15)} (mod 32) 7 ≤ 7
C3 a ≡ 8 (mod 16), b ≡ 7 (mod 32) andω is odd ω+9

2 ≤ ω+9
2

C4 a ≡ 8 (mod 16), b ≡ −9 (mod 32), and 7 ≤ 7
A1

a,b ≡ 0 (mod 4)
C5 a ≡ 8 (mod 16), b ≡ −9 (mod 32), 8 ≤ 8

A1
a,b ≡ 2 (mod 4) and A2

a,b ≡ 0 (mod 4)
C6 ω = 2 + 2k , k ≥ 2 and Ba,b ≡ 2 (mod 4) k + 6 ≤ k + 6
C7 ω = 2 + 2k , k ≥ 2 and Ba,b ≡ 0 (mod 8) k + 7 ≤ k + 7

Table –

Remark :
• when (a, b) ≡ (32, 16) (mod 64) or (a, b) ∈ {(0, 112), (64, 112)} (mod 128),
the problem is still open.
• All the sufficient and necessary conditions under which 2 will be a prime
common index divisor of K depending only on a and b.
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The index of the octic number field defined by x9 + ax + b

Let K = Q(α),F (α) = 0 and F (x) = x9 + ax + b.

Theorem 13 : Ben Yakkou and Teibekabe, 2023

p divides i(K ) =⇒ p ∈ {2, 3}.

Theorem 14 : Ben Yakkou and Teibekabe, 2023

2 divides i(K ) if and only if one of the following conditions hold :

1 a ≡ 1 (mod 4) and b ≡ 2 (mod 4).

2 a ≡ 3 (mod 8) and b ≡ 4 (mod 8).

3 (a, b) ∈ {(15, 0), (31, 16)} (mod 32).

4 (a, b) ∈ {(15, 16), (31, 0)} (mod 32) .

5 a ≡ 7 (mod 16) and b ≡ 8 (mod 16).

Example : Let F (x) = x9 + 289x + 34. The polynomial F (x) irreducible over
Q as it is a 3-Eisenstein polynomial. By Case Theorem 14 (Ben Yakkou and
Teibekabe), 2 divides i(K ). So, K is not monogenic.
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The index of the octic number field defined by x9 + ax + b

Theorem 15 : Ben Yakkou and Teibekabe, 2023

Let ν = ν3(1 + a + b), µ = ν3(9 + a) and ω = ν3(−1 − a + b). Then
3 divides i(K ) if and only if one of the following conditions hold :

1 (a, b) ∈ {(72, 170), (234, 8), (234, 73)} (mod 243).

2 a ≡ 153 (mod 143), b ≡ 89 (mod 243) 2µ < ν + 2.

3 a ≡ 153 (mod 243), b ≡ 89 (mod 243), 2µ > ν + 2, ν is even, and
(1 + a + b)3 ≡ −1 (mod 3).

4 a ≡ 234 (mod 243), b ≡ 235 (mod 243) and 2µ < ω + 2.

5 a ≡ 234 (mod 243), b ≡ 235 (mod 243), 2µ > ω + 2, ω is even, and
(−1 − a + b)3 ≡ 1 (mod 3).

Example : Let p ≥ 5 be a rational prime and F (x) = x9 + pk x + p, where k is
a positive integer. Since F (x) is an Eisenstein polynomial with respect p, it is
irreducible over the field of rationals. By Theorems 13, 15,and 15 (Ben
Yakkou and Teibekabe), the index of K is trivial ; i(K ) = 1.
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Non-monogenic number fields defined by xn + axm + b

Let K = Q(α),F (α), with F (x) = xn + axm + b.
For two positive rational integers d and s, we shall denote by Np(d , s, t) the
number of monic irreducible factors of degree d of the polynomial xs + t in
Fp[x ], and Np(d , s, t)[m, c] the number of monic irreducible factors of degree
d of xs + t in Fp[x ] which do not divide xm + c.

Theorem 16 : Ben Yakkou, 2023 (to appear in Rocky. J. Math)

Let p be an odd rational prime such that p | a, p ∤ b, and p | n. Set n = s · pr

with p ∤ s. Let µ = νp(a) and ν = νp(bp−1 − 1). If for some positive integer d ,
one of the following conditions holds :

1 µ < min{ν, r + 1} and Np(d) < µNp(d , s, b),

2 ν < min{µ, r + 1} and Np(d) < νNp(d , s, b),

3 µ = ν ≤ r and Np(d) < µNp(d , s, b)[m, b+(−b)p
r

a ],

4 r + 1 ≤ min{ν, µ} and Np(d) < (r + 1)Np(d , s, b),

then p is a common index divisor of K . In particular, if one of these conditions
holds, then K is not monogenic.
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Non-monogenic number fields defined by x2k ·3r
+ axm + b

Corollary

For F (x) = x2k ·3r
+ axm + b. If one of the following conditions holds :

1 k ≥ 1, r ≥ 2, a ≡ 9, 18 (mod 27), and b ≡ −1 (mod 27),

2 k ≥ 1, r ≥ 3, a ≡ 27, 54 (mod 81), and b ≡ −1 (mod 81),

3 k ≥ 1, r ≥ 2, a ≡ 0 (mod 27), and b ≡ 8, 17 (mod 27),

4 k ≥ 1, r ≥ 3, a ≡ 0 (mod 81), and b ≡ 26, 53 (mod 81),

5 k ≥ 1, r = 1, a ≡ 0 (mod 9), and b ≡ −1 (mod 9),

6 k ≥ 1, r = 2, a ≡ 0 (mod 27), and b ≡ −1 (mod 27),

7 k = 1, r ≥ 7, a ≡ 37, 2 · 37 (mod 38), and b ≡ 1 (mod 38),

8 k = 1, r ≥ 7, a ≡ 0 (mod 38), and b ≡ 1 + 37, 1 + 2 · 37 (mod 38),

9 k = 1, r = 6, a ≡ 0 (mod 37), and b ≡ 1 (mod 37),

10 k = 2, r ≥ 4, a ≡ 81, 162 (mod 243), and b ≡ 1 (mod 243),

11 k = 2, r ≥ 4, a ≡ 0 (mod 243), and b ≡ 82, 163 (mod 35),

12 k = 2, r = 3, a ≡ 0 (mod 81), and b ≡ 1 (mod 81),

then 3 is a common index divisor of K . In particular, if one of these conditions
holds, then K is not monogenic.
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Non-monogenic number fields defined by xn + axm + b

Theorem 17 : Ben Yakkou, 2023 (to appear in Rocky. J. Math)

Let p be an odd rational prime such that p ∤ a, p | b, and p | n − m. Set
n − m = u · pk with p ∤ u. Let δ = νp(b) and κ = νp(ap−1 − 1). If for some
positive integer d , one of the following conditions holds :

1 δ < min{κ, k + 1} and Np(d) < δNp(d , u, a),

2 κ < min{δ, k + 1} and Np(d) < κNp(d , u, a),

3 κ = δ ≤ k and Np(d) < κNp(d , s, b)[m, b
a+(−a)pk ],

4 k + 1 ≤ min{κ, δ} and Np(d) < (k + 1)Np(d , u, a),

then p is a common index divisor of K . In particular, if one of these conditions
holds, then K is not monogenic.
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Non-monogenic number fields defined by x (s+1)·2r ·3k
+ axs·2r ·3k

+ b

Corollary

For F (x) = x (s+1)·2r ·3k
+ axs·2r ·3k

+ b with s is a positive rational integer. If
one of the following conditions holds :

1 r = 0, k ≥ 5, a ≡ ±1 (mod 243), and b ≡ 81, 162 (mod 243),

2 r = 0, k ≥ 5, a ≡ 80, 82, 161, 163 (mod 243), and b ≡ 0 (mod 243),

3 r = 0, k = 3, a ≡ ±1 (mod 81), and b ≡ 0 (mod 81),

4 r ≥ 1, k ≥ 2, a ≡ −1 (mod 27), and b ≡ 9, 18 (mod 27),

5 r ≥ 1, k ≥ 2, a ≡ 8, 17 (mod 27), and b ≡ 0 (mod 27),

6 r ≥ 1, k = 1, a ≡ −1 (mod 9), and b ≡ 0 (mod 9),

7 r = 1, k ≥ 7, a ≡ 1 (mod 38), and b ≡ 37, 2 · 37 (mod 38),

8 r = 1, k ≥ 7, a ≡ 1 + 37, 1 + 2 · 37 (mod 38), and b ≡ 0 (mod 38),

9 r = 1, k = 6, a ≡ 1 (mod 37), and b ≡ 0 (mod 37),

10 r = 2, k ≥ 5, a ≡ 1 (mod 243), and b ≡ 81, 162 (mod 243),

11 r = 2, k ≥ 5, a ≡ 82, 163 (mod 243), and b ≡ 0 (mod 243),

12 r = 2, k = 3, a ≡ 1 (mod 243), and b ≡ 0 (mod 243),

then 3 is a common index divisor of K . In particular, if one of these conditions
holds, then K is not monogenic.
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Non-monogenic number fields defined by xn + axm + b

Theorem 18 : Ben Yakkou, 2023 (to appear in Rocky. J. Math)

Under the hypotheses of Theorem 17, if gcd{δ,m} = 1, and one of the
following conditions holds :

1 δ < min{κ, k + 1} and p < 1 + δNp(1, u, a),

2 κ < min{δ, k + 1} and p < 1 + κNp(1, u, a),

3 κ = δ ≤ k and p < 1 + κNp(1, s, b)[m, b
a+(−a)pk ],

4 k + 1 ≤ min{κ, δ} and p < 1 + (k + 1)Np(1, u, a),

then p is a common index divisor of K . In particular, if one of these conditions
holds, then K is not monogenic.
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Non-monogenic number fields defined by x2r
+ axm + b

Theorem 19 : Ben Yakkou, 2022

Let F (x) = x2r
+ axm + b be a monic irreducible trinomial and K = Q(α) a

number fields generated by α, a root of F (x). If r ≥ 3 and a and b + 1 are
both divisible by 32, then 2 is a prime common index divisor of K . In
particular, K is not monogenic.

Theorem 20 : Ben Yakkou, 2022

Let K = Q(θ) be a number field with θ root of a monic irreducible trinomial
F (x) = x2r

+ ax + b ∈ Z[x ]. If one of the following conditions holds

1 r ≥ 3, a ≡ 4 (mod 8) and b ≡ 3 (mod 8).

2 r ≥ 4, a ≡ 8 (mod 16) and b ≡ 7 (mod 16).

3 r ≥ 3 and (a, b) ∈ {(0, 31), (16, 15)} (mod 32),

then 2 is a prime common index divisor of K . In particular, if one of these
conditions holds, then K is not monogenic.
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Non monogenic trinomials, but their roots generate monogenic number
fields

Theorem 21 : Ben Yakkou, 2022

Let F (x) = xn + axm + b ∈ Z[x ] be a monic polynomial with discriminant D.
Suppose that there exist a rational prime p dividing both a and b such that
νp(b) ≥ 2, gcd(n, νp(b)) = 1, nνp(a) > (n − m)νp(b), and Dp is square free.
Then F (x) is irreducible over Q. Let K = Q(α) be a number field with α a root
of F (x). Then F (x) is not monogenic (ZK ̸= Z[α]), but K is monogenic.
Moreover, in this case, ZK = Z[θ], with θ = αs

pt , where (s, t) ∈ N2 is the unique
positive solution of the Diophantine equation νp(b)s − nt = 1 with 0 ≤ s < n.

Example : The polynomial F (x) = x8 + 8x + 8 ∈ Z[x ] has discriminant
D = 224 × 1273609. Then F (x) satisfies the conditions of Theorem 21 for
p = 2. Hence, it is irreducible over Q. Let K = Q(α) with α is a root of F (x).
Then ZK ̸= Z[α]. But, K is monogenic and θ = α3

2 generates a power integral
basis of ZK .
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