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@ Background on the ring Rr associated to a binary form f

@ Parametrization of square roots of class of inverse different of Rf
@ Applications to forms f € Z[x, y] with fixed leading coefficient:
o Compute* average 2-torsion in CI(Ryf)
o deg f odd: Prove that most “superelliptic equations” z? = f(x, y) have
no primitive integer solutions
e degf even: Compute* average size of the 2-Selmer group of the
Jacobian of hyperelliptic curve z2 = f(x, y)
@ Applications to quartic f € Z[x, y] with varying leading coefficient:
o Compute* average size of the 2-Selmer group of the Jacobians of
loc. sol. genus-1 curves z2 = f(x, y)
e Compute* second moment of 2-Selmer group of elliptic curves
o Compute* second moment of 2-torsion in class groups of monogenic
cubic fields
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The Definition of Ry

@ Let R be a PID, let K be fraction field of R

o Let f(x,y) = > ;o ix"" 'y’ € R[x, y] separable over K, fy # 0

o Let Kr := K[x]/(f(x,1)) (étale K-algebra); let § = image(x) € K
e Foreach i€ {1,...,n—1}, let p; be the polynomial defined by

pi(t) =) fit™
j=0
@ Let ¢ := pi(0) € Ky for each i

Definition

To the binary form f, there is a naturally associated free R-submodule
Rf C Kr having rank n and R-basis

Rr = R<17 C17 CQ? 000y Cn—1>'
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@ The module Rr has been studied extensively in the literature
o Disc(f) = Disc(Ryr) (Birch & Merriman, 1972)
o Ry is actually a ring (hence an order in K¢) with multiplication table

min{i+j,n} i
GG= > fijoili— > fitj—kChs
k=j+1 k=max{i+j—n,1}

where 1 </ <j<n—1and (g =1and (, = —f, (Nakagawa, 1989)

@ When n =3, f — Rr agrees with Delone-Faddeev correspondence
between GLy-equivalence classes of binary cubic forms and
isomorphism classes of cubic rings
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Fractional Ideals of Ry

@ Consider free rank-n R-submodule l;‘ C Kr with R-basis

IK:=R@1,0,...,05 Ciy1,...,Co1), ke {0,...,n—1}

@ Properties of l,!‘:

o Ifis R-module and hence fractional ideal of Ry, and I = (1})k
o If invertible <= f is primitive (i.e., gcd(fy, ..., f,) = 1)

o For a based fractional ideal | of Ry, the norm N(/) = det. of the
K-linear map taking basis of / to basis of Ry; we have

N(IF) = f5 "

o Whenn=2, f — [I,r1 agrees well-known bijection between
SLy(Z)-classes of b. q. f.'s of disc. D and elements of CI(Q(+/D))

@ Class of /;’_2 is class of inverse different of Ry; i.e.,
[1772] = [Homg(Ry, R)] € CI(Ry)
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A Theorem of Hecke

@ Let K be a number field with ring of integers Ok

Theorem (Hecke)

The class of the different in Cl(Ok) is a perfect square.

@ Hecke's theorem has received no shortage of admiration:

o In Basic Number Theory, Weil placed Hecke's result in a section
entitled “Coronodis loco” (i.e., crowning moment)
o Patterson and Armitage agreed with Weil's characterization

@ But the proof is not constructive!
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@ Answer: When K = Ky for an even-degree binary form f, yes
2-n
(consider [lf 2 ]) otherwise, we have no idea

@ Even if we cannot always construct it, can we still use it?

Question (Ellenberg, MathOverflow 2010)

Is there a “parametrization” a la Bhargava for cubic rings together with a
square root of the class of the different?

@ We answer generalization of Ellenberg’s question to rings of any
degree n > 3 defined by integral binary n-ic forms

@ Note: all cubic rings are of this form (Delone-Faddeev)

Bhargava, Shankar, Swaminathan 9/34
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o Let f € Z[x,y] be a form of degree n > 3, leading coeff. fy # 0; and
o Let G=SL, ifnisodd and G = SL if n is even.
Square roots of the class of the (different)~! of Ry give rise to G(Z)-orbits

of certain pairs (A, B) € 72 @z Sym, Z" of n x n symmetric integer
matrices satisfying

det(xA + yB) = f;7 1 x f(x, foy),

where g € G(Z) acts on (A,B) by g - (A, B) = (gAg",gBg").

o We call f; % x f(x, fyy) the monicized form of f and denote it f™"
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Construction of An Integral Orbit

o Let / be a fractional ideal of Ry; suppose Jov € K such that
I?Ca-17% and N(/)®>=N(a) N(If7?)
o Consider the symmetric bilinear form
(= =) I x =172, (B) = (Boy) =a b By
@ Define functionals v, _2,¢,_1 € HomR(l;’*z, R) by
¥n_o = projection onto "2, ), 1 = —(projection onto (,—1)
@ Let A and B be symmetric n X n matrices over R representing
Yp_10(—,—): I xI—R and ¢Ypo0(—,—):IxI—R

w.r.t. chosen R-basis of /
@ G(R) acts via change-of-basis on /, induces action

g (A B)=(gAg",gBg") for g € G(R)



Image of the Parametrization

Theorem (S., 2020)

Let (A, B) € R? ®g Sym, R" be such that det(xA + yB) = f™"(x, y).
The (G(R)-orbit) of (A, B) arises from parametrization if and only if

p,-(%o . —BA_l) € Mat,«n(R) foreach ie€{l,...,n—1}.

Bhargava, Shankar, Swaminathan 12 /34



Image of the Parametrization

Theorem (S., 2020)

Let (A, B) € R? ®g Sym, R" be such that det(xA + yB) = f™"(x, y).
The (G(R)-orbit) of (A, B) arises from parametrization if and only if

p,-(%o . —BA_l) € Mat,«n(R) foreach ie€{l,...,n—1}.

@ Image cut out by congruence conditions mod fb”_l

Bhargava, Shankar, Swaminathan 12 /34



Image of the Parametrization

Theorem (S., 2020)

Let (A, B) € R? ®g Sym, R" be such that det(xA + yB) = f™"(x, y).
The (G(R)-orbit) of (A, B) arises from parametrization if and only if

p,-(%0 . —BA_l) € Mat,«n(R) foreach ie€{l,...,n—1}.

@ Image cut out by congruence conditions mod fb”_l

@ For applications to forms with varying leading coefficient, helpful if
image is defined mod fy, rather than a higher power

Bhargava, Shankar, Swaminathan 12 /34



Image of the Parametrization

Theorem (S., 2020)

Let (A, B) € R? ®g Sym, R" be such that det(xA + yB) = f™"(x, y).
The (G(R)-orbit) of (A, B) arises from parametrization if and only if

p;(%o . —BA_l) € Mat,«n(R) foreach ie€{l,...,n—1}.

@ Image cut out by congruence conditions mod fb”_l

@ For applications to forms with varying leading coefficient, helpful if
image is defined mod fy, rather than a higher power

Theorem (Bhargava, Shankar, S., 2021)
Let (A, B) € R? ®g Sym, R".

Bhargava, Shankar, Swaminathan 12 /34



Image of the Parametrization

Theorem (S., 2020)

Let (A, B) € R? ®g Sym, R" be such that det(xA + yB) = f™"(x, y).
The (G(R)-orbit) of (A, B) arises from parametrization if and only if

p;(%o . —BA_l) € Mat,«n(R) foreach ie€{l,...,n—1}.

@ Image cut out by congruence conditions mod fb”_l

@ For applications to forms with varying leading coefficient, helpful if
image is defined mod fy, rather than a higher power

Theorem (Bhargava, Shankar, S., 2021)

Let (A, B) € R? ®g Sym, R". Ifdet A= 1 and B has rk <1 mod fy (i.e.,
B o (linear form)?), then (A, B) arises for some integral binary n-ic form f
with f(1,0) = fo.

Bhargava, Shankar, Swaminathan 12 /34



Image of the Parametrization

Theorem (S., 2020)

Let (A, B) € R? ®g Sym, R" be such that det(xA + yB) = f™"(x, y).
The (G(R)-orbit) of (A, B) arises from parametrization if and only if

p;(%o . —BA_l) € Mat,«n(R) foreach ie€{l,...,n—1}.

@ Image cut out by congruence conditions mod fb”_l
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image is defined mod fy, rather than a higher power

Theorem (Bhargava, Shankar, S., 2021)

Let (A, B) € R? ®g Sym, R". Ifdet A= 1 and B has rk <1 mod fy (i.e.,
B o (linear form)?), then (A, B) arises for some integral binary n-ic form f
with f(1,0) = fy. Converse holds when Rf = Ok, or ged(fy, fi) = 1.
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Statistical Applications to Forms with
Fixed Leading Coefficient




Primer on Parametrize-and-Count Strategy

o Step 1 (algebraic): Parametrize arithmetic objects of interest in
terms of integral /rational orbits of a coregular representation G ~ V;
if rational, check that these orbits have integral representatives
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Primer on Parametrize-and-Count Strategy

o Step 1 (algebraic): Parametrize arithmetic objects of interest in
terms of integral /rational orbits of a coregular representation G ~ V;
if rational, check that these orbits have integral representatives

e E.g., let V = {binary quartic forms} and G = PGL;; PGL, ~ V,
with ring of invariants = Z(/, J)

e Step 2 (analytic): Use geometry-of-numbers methods and sieve
techniques to count integral representatives

Bhargava, Shankar, Swaminathan 14 /34



2-Torsion in the Class Group of R

o If Rr = OKf, then
# CI(Rf)[2] = #{square roots of class of (different) ™}
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1
Avgf(# Cl(Rf)[2]) S* 1+ 21_f1—f2+217r17r2 =
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2-Torsion in the Class Group of R (cont'd.)

Theorem (S., 2020)

Avge(# CI(R)[2]) <* 1+ 2117240110 (g(k) - k")~

o Cohen-Lenstra-Martinet-Malle => Avg(# CI(K)[2]) = 1 + 21-n1~"
over all degree-n S, number fields K with signature (ri, r2)
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Theorem (S., 2020)

Avge(# CI(R)[2]) <* 1+ 2117240110 (g(k) - k")~

o Cohen-Lenstra-Martinet-Malle => Avg(# CI(K)[2]) = 1 + 21-n1~"
over all degree-n S, number fields K with signature (ri, r2)

@ Deviation from conjecture vanishes upon averaging over all f;

@ Note: the family of number fields K defined by binary n-ic forms
with leading coefficient fy is a multiset, as distinct binary forms (e.g.,
GLy(Z)-equivalent forms) can define the same field!

Theorem (Gy6ry, Bennett, Evertse-Gydry, Evertse, Akhtari-Bhargava)

An order in a number field has finitely many monogenizations (i.e., choice
of monogenizer up to Z-translate).
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Theorem (S., 2020)

Avge(# CI(R)[2]) <* 1+ 2117240110 (g(k) - k")~

o Cohen-Lenstra-Martinet-Malle => Avg(# CI(K)[2]) = 1 + 21-n1~"
over all degree-n S, number fields K with signature (ri, r2)

@ Deviation from conjecture vanishes upon averaging over all f;

@ Note: the family of number fields K defined by binary n-ic forms
with leading coefficient fy is a multiset, as distinct binary forms (e.g.,
GLy(Z)-equivalent forms) can define the same field!

Theorem (Gy6ry, Bennett, Evertse-Gydry, Evertse, Akhtari-Bhargava)

An order in a number field has finitely many monogenizations (i.e., choice
of monogenizer up to Z-translate). When n = 2, exactly 1;
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2-Torsion in the Class Group of R (cont'd.)

Theorem (S., 2020)

Avgf(# C|(Rf)[2]) <*14+ 21—r1—r2+21—r1—r2 . ((f(k) k2 )71

o Cohen-Lenstra-Martinet-Malle => Avg(# CI(K)[2]) = 1 + 21-n1~"
over all degree-n S, number fields K with signature (ri, r2)
@ Deviation from conjecture vanishes upon averaging over all f;

@ Note: the family of number fields K defined by binary n-ic forms
with leading coefficient fy is a multiset, as distinct binary forms (e.g.,
GLy(Z)-equivalent forms) can define the same field!

Theorem (Gy6ry, Bennett, Evertse-Gydry, Evertse, Akhtari-Bhargava)

An order in a number field has finitely many monogenizations (i.e., choice
of monogenizer up to Z-translate). When n = 2, exactly 1; when n = 3, at
most 10;
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Theorem (S., 2020)
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o Cohen-Lenstra-Martinet-Malle => Avg(# CI(K)[2]) = 1 + 21-n1~"
over all degree-n S, number fields K with signature (ri, r2)
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GLy(Z)-equivalent forms) can define the same field!

Theorem (Gy6ry, Bennett, Evertse-Gydry, Evertse, Akhtari-Bhargava)
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most 10; when n = 4, at most 2760;

Bhargava, Shankar, Swaminathan 16 /34



2-Torsion in the Class Group of R (cont'd.)

Theorem (S., 2020)

Avgf(# C|(Rf)[2]) <*14+ 21—r1—r2+21—r1—r2 . ((f(k) k2 )71

o Cohen-Lenstra-Martinet-Malle => Avg(# CI(K)[2]) = 1 + 21-n1~"
over all degree-n S, number fields K with signature (ri, r2)
@ Deviation from conjecture vanishes upon averaging over all f;

@ Note: the family of number fields K defined by binary n-ic forms
with leading coefficient fy is a multiset, as distinct binary forms (e.g.,
GLy(Z)-equivalent forms) can define the same field!

Theorem (Gy6ry, Bennett, Evertse-Gydry, Evertse, Akhtari-Bhargava)

An order in a number field has finitely many monogenizations (i.e., choice
of monogenizer up to Z-translate). When n = 2, exactly 1; when n = 3, at
most 10; when n = 4, at most 2760; when n > 4, at most 24(n+5)(n=2)

Bhargava, Shankar, Swaminathan 16 /34



Integral Solutions to Superelliptic Equations

o Let f € Z[x,y] a separable form of degree n=2N+1>5
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o Consider primitive solutions: (xo, yo) € Z? s.t. gcd(xg, yo) = 1
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Integral Solutions to Superelliptic Equations

o Let f € Z[x,y] a separable form of degree n=2N+1>5
@ Rational solutions to z? = f(x, y) are not interesting:

e For any (xo,¥0) € Q?, let zy = f(xo, yo); then (zé\”rl)2 = f(x020, Y020)
o Geometrically:

V(2% - f(x,y)) —— P3(2,2,2N +1)

I
\ i forget z
~ +

1
Po

o Consider primitive solutions: (xo, yo) € Z? s.t. gcd(xg, yo) = 1

Theorem (“Faltings +¢,” Darmon-Granville, 1995)

7% = f(x, y) has finitely many primitive integer solutions.
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Integral Solutions to Superelliptic Equations (cont'd.)

e Given a primitive integer solution to z?> = f(x, y), can construct frac-
tional ideal of Ry whose class is a square root of class of (different)™!
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tional ideal of Ry whose class is a square root of class of (different)~?

Theorem (S., 2019)
Fix odd fy € Z such that fy # O, let || = m?k.
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e Given a primitive integer solution to z?> = f(x, y), can construct frac-
tional ideal of Ry whose class is a square root of class of (different)~?

Theorem (S., 2019)

Fix odd fy € Z such that fy # O, let |fy| = m?k. Then for all sufficiently
large odd integers n:

e A positive proportion of degree-n forms f with leading coefficient fy
are such that z> = f(x, y) has no primitive integer solutions.

o More specifically, let jif, = Hp|k(p_2 + (p—1)p~N=1). The density
of f such that z2 = f(x,y) is soluble is < ug, + o(2~N).

o Furthermore, a positive proportion of degree-n forms f are such that
72 = f(x,y) fails Hasse principle due to Brauer-Manin obstruction.
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Integral Solutions to Superelliptic Equations (cont'd.)

e Given a primitive integer solution to z?> = f(x, y), can construct frac-
tional ideal of Ry whose class is a square root of class of (different)~?

Theorem (S., 2019)

Fix odd fy € Z such that fy # O, let |fy| = m?k. Then for all sufficiently
large odd integers n:

e A positive proportion of degree-n forms f with leading coefficient fy
are such that z> = f(x, y) has no primitive integer solutions.

o More specifically, let jif, = Hp|k(p_2 + (p—1)p~N=1). The density
of f such that z2 = f(x,y) is soluble is < ug, + o(2~N).

o Furthermore, a positive proportion of degree-n forms f are such that
72 = f(x,y) fails Hasse principle due to Brauer-Manin obstruction.

v

o Eg: {p|k}D{2,3,7} = limp_oo 1 — ug, +0(27N) >99.9%
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2-Selmer Groups of Hyperelliptic Jacobians

o Let f(x,y) € Z|x, y] be a separable form of even degree n > 4;
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consider hyperelliptic curve Cr: z2 = f(x, y) with Jacobian J(Cr)

@ 2-cover of Cr (resp., J(Cr)) := cover of Cr (resp., J(Cr)) with
automorphism group isomorphic to J(Cr)[2] as Gal(Q/Q)-module
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2-Selmer Groups of Hyperelliptic Jacobians

o Let f(x,y) € Z|x, y] be a separable form of even degree n > 4;
consider hyperelliptic curve Cr: z2 = f(x, y) with Jacobian J(Cr)

Definition

@ 2-cover of Cr (resp., J(Cr)) := cover of Cr (resp., J(Cr)) with
automorphism group isomorphic to J(Cr)[2] as Gal(Q/Q)-module

e Variety X/Q is soluble if X(Q) # &, locally soluble if X(Q,) # & Vv
@ 2-Selmer group Selx(J(Cr)) := {loc. sol. 2-covers of J(Cr)}

e Motivation: rank of the 2-Selmer group > rank of J(Cy)

@ Objective: apply parametrize-and-count strategy to study the
distribution of Sel»(J(Cr)) as f varies
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2-Selmer Groups of Hyperelliptic Jacobians (cont'd.)

e Warmup case: Cr(Q) # @.
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2-Selmer Groups of Hyperelliptic Jacobians (cont'd.)

o Warmup case: C¢(Q) # @. Then pullback via Cr — J(C) induces

{loc. sol. 2-covers of J(C¢)} < {loc. sol. 2-covers of Cr}

Theorem (Bhargava, 2013 (via Wood, 2010))

(A, B) € Z? ®7 Sym, Z" s.t.
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/6t im)@)
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2-Selmer Groups of Hyperelliptic Jacobians (cont'd.)

o Warmup case: C¢(Q) # @. Then pullback via Cr — J(C) induces

{loc. sol. 2-covers of J(C¢)} < {loc. sol. 2-covers of Cr}

Theorem (Bhargava, 2013 (via Wood, 2010))

(A, B) € Z? ®7 Sym, Z" s.t.

{loc. sol. 2-cover of C¢} —

/6t im)@)
det(xA + yB) = f(x,y)

@ Serious problem: If C¢(Q) = @, there may not exist
(A, B) € Z? ®7 Sym, Z" with det(xA + yB) = f(x,y)!
@ Simple solution: Create a Q-rational point by replacing f with fm°"

e Cimn(Q) # 2,
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2-Selmer Groups of Hyperelliptic Jacobians (cont'd.)

o Warmup case: C¢(Q) # @. Then pullback via Cr — J(C) induces

{loc. sol. 2-covers of J(C¢)} < {loc. sol. 2-covers of Cr}

Theorem (Bhargava, 2013 (via Wood, 2010))

(A, B) € Z? ®7 Sym, Z" s.t.

{loc. sol. 2-cover of C¢} —

/6t im)@)
det(xA + yB) = f(x,y)

@ Serious problem: If C¢(Q) = @, there may not exist
(A, B) € Z? ®7 Sym, Z" with det(xA + yB) = f(x,y)!
@ Simple solution: Create a Q-rational point by replacing f with fm°"

o Crmon(Q) # @, twist of Cr by Q(v/T)
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2-Selmer Groups of Hyperelliptic Jacobians (cont'd.)

o Warmup case: C¢(Q) # @. Then pullback via Cr — J(C) induces

{loc. sol. 2-covers of J(C¢)} < {loc. sol. 2-covers of Cr}

Theorem (Bhargava, 2013 (via Wood, 2010))

(A, B) € Z? ®7 Sym, Z" s.t.

{loc. sol. 2-cover of C¢} —

/6t im)@)
det(xA + yB) = f(x,y)

@ Serious problem: If C¢(Q) = @, there may not exist
(A, B) € Z? ®7 Sym, Z" with det(xA + yB) = f(x,y)!
@ Simple solution: Create a Q-rational point by replacing f with fm°"

o Crmon(Q) # @, twist of Cr by Q(v/T)
o J(Cr)[2] = J(Cemon)[2],
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2-Selmer Groups of Hyperelliptic Jacobians (cont'd.)

o Warmup case: C¢(Q) # @. Then pullback via Cr — J(C) induces

{loc. sol. 2-covers of J(C¢)} < {loc. sol. 2-covers of Cr}

Theorem (Bhargava, 2013 (via Wood, 2010))

(A, B) € Z? ®7 Sym, Z" s.t.

{loc. sol. 2-cover of C¢} —

/6t im)@)
det(xA + yB) = f(x,y)

@ Serious problem: If C¢(Q) = @, there may not exist
(A, B) € Z? ®7 Sym, Z" with det(xA + yB) = f(x,y)!
@ Simple solution: Create a Q-rational point by replacing f with fm°"
o Crmon(Q) # @, twist of Cr by Q(+v/f)
@ J(Cr)[2] ~ J(Cmen)[2], which identifies elts of Sel,(J(Cr)) with
certain 2-covers of J(Cgmon)
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@ Suppose Cr is loc. sol. if 4 | n. Given element of Sela(J(Cr)), can
construct square root of class of (different) ™! of R¢

@ Combining with parametrization yields:

(A, B) € Z? ®7 Sym, Z" s.t.

Sel,(J(Cr)) — /(SLn/uz)(Z)

det(xA + yB) = f™"(x, y)

Theorem (Bhargava, Shankar, and S., 2021)

Consider forms f € Z|x, y]| of even degree n > 4 with fixed fy # 0 such
that C¢ is loc. sol. if 4 | n. Then Avg # Sel>(J(Cr)) <* 6.

@ Robust under imposition of any finite set, and even very general
infinite sets, of congruence conditions

@ Confirms Poonen—Rains conjecture for even genus curves

Bhargava, Shankar, Swaminathan 21/34



Statistical Applications to Forms with
Varying Leading Coefficient




Varying the Leading Coefficient

o Goal: Compute Avg # Sela(J(Cr)) over all f (loc. sol. if 4 | n)
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Goal: Compute Avg # Sela(J(Cr)) over all f (loc. sol. if 4 | n)

Naive approach: Determine asymptotic count of Selmer elements for
each fixed fy, and then simply sum over all possible values of fy

Given fy € Z\ {0}, let 5S¢ (X) :={f : H*(f) < X, f(1,0) = fo}, where

H () = maxc{| £/}

Then we have
n(n—1) n(n+1)

Z #Sel,(J(Cr)) < fy 2 X 2 +error
FeSg (X)

Problem: natural height on binary forms is H(f) = max;{|fi|}
Sq(X) #A{f H(f) < X, f(1,0) = fo}, unless fo < X
Turns out that contribution from fy % X is negligible

Bhargava, Shankar, Swaminathan 23 /34



Varying the Leading Coefficient (cont'd.)

@ Summing bound over fy < X and ignoring error term, we find that
Avg # Sel,(J(Cr)) <
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#{FH(F) <X} &, ° Xn+1 B
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Varying the Leading Coefficient (cont'd.)

@ Summing bound over fy < X and ignoring error term, we find that
Avg # Sel,(J(Cr)) <

1 S T X e L xmit o
#{FH(F) <X} &, ° Xn+1 B
o=

@ Problem: Error term overtakes main term for fy close to X

o Multiple sources of error; worst is application of Davenport's Lemma:
# of lattice points satisfying congruence conditions in a “round”
region =~ the volume of the region times the probability that the
congruence conditions are satisfied

Bhargava, Shankar, Swaminathan 24 /34
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(A, B) arises for some integral binary n-ic form f with f(1,0) = f,.

Q Let n=4.

V.

Bhargava, Shankar, Swaminathan 25/34




Orbits of rk < 1 mod fy

@ To control error, need to understand image of parametrization better

@ Recall image is a priori defined by congruence conditions mod fo”_lz
(A, B) with det(xA + yB) = f™"(x, y) arises if and only if

p,( - —BA™ ) € Matpxn(Z) foreach ie€{l,...,n—1}.

Theorem (Bhargava, Shankar, S., 2021)
Let (A, B) € R?> ®g Sym, R".
Q I/fdet A=1 and B has rk <1 mod fy (i.e., B  (linear form)?), then
(A, B) arises for some integral binary n-ic form f with f(1,0) = fo.
@ Converse of (1) holds when R = Ok, or ged(fo, fi) = 1.
Q /fdetA=1and N'B=0 (mod fj ') for each i € {2,...,n}, then
(A, B) arises for some integral binary n-ic form f with f(1,0) = fy.
Q Let n=4. 3 (SLg /p2)(Q)-translate (A, B') € Z? ®z Symy Z* such
that A'B' = 0 (mod fj 1) for each i € {2,3,4}

v
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Error from Davenport's Lemma
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Error from Davenport's Lemma

A

X

@ Want to count lattice pts cut
. . . out by congruence conditions
mod m in box of sidelength X

. . . e If m/X is tiny, Davenport's
lemma gives good estimate

~

m X @ But orbits we want to count
are defined by conditions mod
LA fo, and fop < X

. @ If m= X and pts are sparse
. or concentrated near edges of
. box, error in Davenport's

. lemma will be huge

0
m =
Bhargava, Shankar, Swaminathan 26 /34
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Error from Davenport's Lemma
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Error from Davenport's Lemma

@ Want to prove that orbits arising from parametrization are somewhat
equidistributed in box, even when m = fp < X

@ Let x = indicator function mod fy of image of parametrization

proving pts somewhat equidistributed <= bounding Z IX(B)|
B+£0
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Error from Davenport’s Lemma (cont'd.)

@ Want to prove that orbits arising from parametrization are somewhat

equidistributed in box, even when m = fp < X

@ Let x = indicator function mod fy of image of parametrization

proving pts somewhat equidistributed <= bounding Z IX(B)|

B0

e Easy to show that if fy = prime p, e.g., we have |X(B)| < p4_¥
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2-Selmer Groups of Genus-1 Curves

Theorem (Bhargava, Shankar, and S., 2021)

When integral binary quartic forms f such that Cr is loc. sol. are ordered
by the max norm on their coefficients, we have Avg # Sely(J(Cr)) <* 6.
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2-Selmer Groups of Genus-1 Curves

Theorem (Bhargava, Shankar, and S., 2021)

When integral binary quartic forms f such that Cr is loc. sol. are ordered
by the max norm on their coefficients, we have Avg # Sely(J(Cr)) <* 6.

o Family of curves Cr, where f ranges over all binary quartic forms, has
redundancies: If f,f" are PGLy(Q)-equivalent, then Cr ~ Css

@ Crucially, average remains <* 6 even if quotient our family by the
action of PGL,(Q)
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The Second Moment of the Size of the
2-Selmer Group of Elliptic Curves




Background on Elliptic Curves and their Selmer groups

@ Every elliptic curve E/Q is iso. to unique curve of the form
E=E,: y2=x3+Ix+J,

where I, J € Z such that p* | | = p®{ J
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Background on Elliptic Curves and their Selmer groups

@ Every elliptic curve E/Q is iso. to unique curve of the form
E=E,: y2=x3+Ix+J,

where I, J € Z such that p* | | = p°{ J
o Order elliptic curves by height: H(E; ;) = max{4|/|3,27J%}

What is the distribution of Sely(E) as E ranges through all elliptic curves
ordered by height?

Conjecture (Poonen and Rains, 2010)
Avg # Selp(E)™ = [, (27 + 1)

o E.g., Avg#Selr(E) = 3, and Avg # Selr(E)? = 15
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Avg # Sely(E) = 3.

@ Proof proceeds by means of parametrize-and-count strategy
o Let V = {binary quartic forms}; PGLy ~ V/, with invts. = Z(/, J)

Theorem (Birch and Swinnerton-Dyer, 1963)

The map f — Cr defines a bijection between the set of PGL2(Q)-orbits of
forms f € V(Z) with PGLy-invariants |, J such that C¢ is (loc.) sol. and
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Theorem (Bhargava and Shankar, 2010)
Avg # Sely(E) = 3.

@ Proof proceeds by means of parametrize-and-count strategy

o Let V = {binary quartic forms}; PGLy ~ V/, with invts. = Z(/, J)

Theorem (Birch and Swinnerton-Dyer, 1963)

The map f — Cs defines a bijection between the set of PGLy(Q)-orbits of
forms f € V(Z) with PGLy-invariants |, J such that C¢ is (loc.) sol. and
the set of isomorphism classes of (loc.) sol. 2-covers of E; ;.

@ By abuse of notation, write f € Sely(E) to denote corresponding
(PGL2(Q)-orbit of) integral binary quartic form
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o Proven by Bhargava—Shankar (2010)
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where we work with binary quartic forms f up to PGL2(Q) action
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Theorem (Bhargava, Shankar, and S., 2021)
Avg # Selp(E)? <* 15.

Idea of the Proof:
e Want to count pairs (f, f’) € Sely(E)?
e Fix f € Sely(E), and consider 2 cases:
o Case 1: f =id € Sely(E)

o Heuristic: 3 choices for f on avg
o Proven by Bhargava—Shankar (2010)

o Case 2: f #id € Sely(E)
o Heuristic: 2 choices for f on avg, and notice E has marked non-trivial
2-Selmer element = 2 x 3 = 6 choices for f’ on avg
o Sely(E) ~ Sel2(J(Cr)), so Avg #{choices for '} = Avg # Sel2(J(Cr)),
where we work with binary quartic forms f up to PGL2(Q) action

e Combining Cases 1,2 = 1 x 342 x 6 = 15 choices for (f, f’) on avg
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Class Group Application

e Let f € Z[x, y] be monic integral binary cubic form such that
Rf = Ok, (so that K¢ is a monogenic cubic field)
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Rf = Ok, (so that K¢ is a monogenic cubic field)

o Class field theory = CI(Rf)[2]* — Sela(y? = f(x,1))

Theorem (Bhargava, Shankar, and S., 2021)

When fields arising from monic integral binary cubic forms f with 3 (resp.,
1) real roots are ordered by height, Avg # CI(R¢)[2]> <* 3 (resp., 6).
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Class Group Application

e Let f € Z[x, y] be monic integral binary cubic form such that
Rf = Ok, (so that K¢ is a monogenic cubic field)

o Class field theory = CI(Rf)[2]* — Sela(y? = f(x,1))

Theorem (Bhargava, Shankar, and S., 2021)

When fields arising from monic integral binary cubic forms f with 3 (resp.,
1) real roots are ordered by height, Avg # CI(R¢)[2]> <* 3 (resp., 6).

# real roots | Avg, # CI(Rf)[2] = | Avgs # CI(Rf)[2)? <*
3 3/2 (5/4) 3 (15/8)
1 2 (3/2) 6 (3)
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Thank You!!
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