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Roadmap

Background on the ring Rf associated to a binary form f

Parametrization of square roots of class of inverse different of Rf

Applications to forms f ∈ Z[x , y ] with fixed leading coefficient:

Compute? average 2-torsion in Cl(Rf )
deg f odd: Prove that most “superelliptic equations” z2 = f (x , y) have
no primitive integer solutions
deg f even: Compute? average size of the 2-Selmer group of the
Jacobian of hyperelliptic curve z2 = f (x , y)

Applications to quartic f ∈ Z[x , y ] with varying leading coefficient:

Compute? average size of the 2-Selmer group of the Jacobians of
loc. sol. genus-1 curves z2 = f (x , y)
Compute? second moment of 2-Selmer group of elliptic curves
Compute? second moment of 2-torsion in class groups of monogenic
cubic fields
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Rings Associated to Binary Forms
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The Definition of Rf

Let R be a PID, let K be fraction field of R

Let f (x , y) =
∑

i=0 fix
n−iy i ∈ R[x , y ] separable over K , f0 6= 0

Let Kf := K [x ]/(f (x , 1)) (étale K -algebra); let θ = image(x) ∈ Kf

For each i ∈ {1, . . . , n − 1}, let pi be the polynomial defined by

pi (t) :=
i−1∑
j=0

fj t
i−j

Let ζi := pi (θ) ∈ Kf for each i

Definition

To the binary form f , there is a naturally associated free R-submodule
Rf ⊂ Kf having rank n and R-basis

Rf := R〈1, ζ1, ζ2, . . . , ζn−1〉.
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Properties of Rf

The module Rf has been studied extensively in the literature

Disc(f ) = Disc(Rf ) (Birch & Merriman, 1972)
Rf is actually a ring (hence an order in Kf ) with multiplication table

ζiζj =

min{i+j,n}∑
k=j+1

fi+j−kζk −
i∑

k=max{i+j−n,1}

fi+j−kζk ,

where 1 ≤ i ≤ j ≤ n − 1 and ζ0 = 1 and ζn = −fn (Nakagawa, 1989)

When n = 3, f 7! Rf agrees with Delone-Faddeev correspondence
between GL2-equivalence classes of binary cubic forms and
isomorphism classes of cubic rings
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Fractional Ideals of Rf

Consider free rank-n R-submodule I kf ⊂ Kf with R-basis

I kf := R〈1, θ, . . . , θk , ζk+1, . . . , ζn−1〉, k ∈ {0, . . . , n − 1}

Properties of I kf :
I kf is Rf -module and hence fractional ideal of Rf , and I kf = (I 1f )k

I kf invertible ⇐⇒ f is primitive (i.e., gcd(f0, . . . , fn) = 1)

For a based fractional ideal I of Rf , the norm N(I ) = det. of the
K -linear map taking basis of I to basis of Rf ; we have

N(I kf ) = f −k0

When n = 2, f 7! [I 1f ] agrees well-known bijection between
SL2(Z)-classes of b. q. f.’s of disc. D and elements of Cl(Q(

√
D))

Class of I n−2f is class of inverse different of Rf ; i.e.,

[I n−2f ] =
[

HomR(Rf ,R)
]
∈ Cl(Rf )
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A Theorem of Hecke

Let K be a number field with ring of integers OK

Theorem (Hecke)

The class of the different in Cl(OK ) is a perfect square.

Hecke’s theorem has received no shortage of admiration:

In Basic Number Theory, Weil placed Hecke’s result in a section
entitled “Coronodis loco” (i.e., crowning moment)
Patterson and Armitage agreed with Weil’s characterization

But the proof is not constructive!
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Questions

Question (Emerton, MathOverflow 2010)

Does the ideal class of the different of K have a canonical square root?

Answer: When K = Kf for an even-degree binary form f , yes

(consider
[
I
2−n
2

f

]
); otherwise, we have no idea

Even if we cannot always construct it, can we still use it?

Question (Ellenberg, MathOverflow 2010)

Is there a “parametrization” à la Bhargava for cubic rings together with a
square root of the class of the different?

We answer generalization of Ellenberg’s question to rings of any
degree n ≥ 3 defined by integral binary n-ic forms

Note: all cubic rings are of this form (Delone-Faddeev)
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Orbit Parametrization

Theorem (S., 2020)

Let f ∈ Z[x , y ] be a form of degree n ≥ 3, leading coeff. f0 6= 0; and

Let G = SLn if n is odd and G = SL±n if n is even.

Square roots of the class of the (different)−1 of Rf give rise to G (Z)-orbits
of certain pairs (A,B) ∈ Z2 ⊗Z Sym2 Zn of n × n symmetric integer
matrices satisfying

det(xA + yB) = f −10 × f (x , f0y),

where g ∈ G (Z) acts on (A,B) by g · (A,B) = (gAgT , gBgT ).

We call f −10 × f (x , f0y) the monicized form of f and denote it f mon
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Construction of An Integral Orbit

Let I be a fractional ideal of Rf ; suppose ∃α ∈ K×f such that

I 2 ⊂ α · I n−2f and N(I )2 = N(α) · N(I n−2f )

Consider the symmetric bilinear form

〈−,−〉 : I × I ! I n−2f , (β, γ) 7! 〈β, γ〉 = α−1 · βγ
Define functionals ψn−2, ψn−1 ∈ HomR(I n−2f ,R) by

ψn−2 = projection onto θn−2, ψn−1 = −(projection onto ζn−1)

Let A and B be symmetric n × n matrices over R representing

ψn−1 ◦ 〈−,−〉 : I × I ! R and ψn−2 ◦ 〈−,−〉 : I × I ! R

w.r.t. chosen R-basis of I

G (R) acts via change-of-basis on I , induces action

g · (A,B) = (gAgT , gBgT ) for g ∈ G (R)
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Image of the Parametrization

Theorem (S., 2020)

Let (A,B) ∈ R2 ⊗R Sym2 R
n be such that det(xA + yB) = f mon(x , y).

The (G (R)-orbit) of (A,B) arises from parametrization if and only if

pi
(
1
f0
· −BA−1

)
∈ Matn×n(R) for each i ∈ {1, . . . , n − 1}.

Image cut out by congruence conditions mod f n−10

For applications to forms with varying leading coefficient, helpful if
image is defined mod f0, rather than a higher power

Theorem (Bhargava, Shankar, S., 2021)

Let (A,B) ∈ R2 ⊗R Sym2 R
n. If detA = 1 and B has rk ≤ 1 mod f0 (i.e.,

B ∝ (linear form)2), then (A,B) arises for some integral binary n-ic form f
with f (1, 0) = f0. Converse holds when Rf = OKf

or gcd(f0, f1) = 1.
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Statistical Applications to Forms with
Fixed Leading Coefficient
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Primer on Parametrize-and-Count Strategy

Step 1 (algebraic): Parametrize arithmetic objects of interest in
terms of integral/rational orbits of a coregular representation G y V ;
if rational, check that these orbits have integral representatives

E.g., let V = {binary quartic forms} and G = PGL2; PGL2 y V ,
with ring of invariants = Z〈I , J〉
Step 2 (analytic): Use geometry-of-numbers methods and sieve
techniques to count integral representatives
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2-Torsion in the Class Group of Rf

If Rf = OKf
, then

# Cl(Rf )[2] = #{square roots of class of (different)−1}

Theorem (S., 2020)

Let n be odd, let f0 ∈ Z \ {0}, and let |f0| = m2k, where k is square-free.
When fields defined by integral binary n-ic forms f with f (1, 0) = f0, r1
real roots, and r2 = n−r1

2 pairs of complex roots are ordered by height,

Avgf (# Cl(Rf )[2]) ≤? 1 + 21−r1−r2+21−r1−r2 · 1

σ(k) · k
n−3
2

Generalizes results of Bhargava-Hanke-Shankar (2019) in the case
n = 3 and Siad (2020) in the case f0 = 1 (monogenic)
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2-Torsion in the Class Group of Rf (cont’d.)

Theorem (S., 2020)

Avgf (# Cl(Rf )[2]) ≤? 1 + 21−r1−r2+21−r1−r2 ·
(
σ(k) · k

n−3
2
)−1

Cohen-Lenstra-Martinet-Malle =⇒ AvgK (# Cl(K )[2]) = 1 + 21−r1−r2

over all degree-n Sn number fields K with signature (r1, r2)

Deviation from conjecture vanishes upon averaging over all f0

Note: the family of number fields Kf defined by binary n-ic forms
with leading coefficient f0 is a multiset, as distinct binary forms (e.g.,
GL2(Z)-equivalent forms) can define the same field!

Theorem (Győry, Bennett, Evertse–Győry, Evertse, Akhtari–Bhargava)

An order in a number field has finitely many monogenizations (i.e., choice
of monogenizer up to Z-translate). When n = 2, exactly 1; when n = 3, at
most 10; when n = 4, at most 2760; when n ≥ 4, at most 24(n+5)(n−2).
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Integral Solutions to Superelliptic Equations

Let f ∈ Z[x , y ] a separable form of degree n = 2N + 1 ≥ 5

Rational solutions to z2 = f (x , y) are not interesting:

For any (x0, y0) ∈ Q2, let z0 = f (x0, y0); then (zN+1
0 )2 = f (x0z0, y0z0)

Geometrically:

V (z2 − f (x , y)) P2
Q(2, 2, 2N + 1)

P1
Q

∼
forget z

Consider primitive solutions: (x0, y0) ∈ Z2 s.t. gcd(x0, y0) = 1

Theorem (“Faltings +ε,” Darmon-Granville, 1995)

z2 = f (x , y) has finitely many primitive integer solutions.
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Integral Solutions to Superelliptic Equations (cont’d.)

Given a primitive integer solution to z2 = f (x , y), can construct frac-
tional ideal of Rf whose class is a square root of class of (different)−1

Theorem (S., 2019)

Fix odd f0 ∈ Z such that f0 6= �, let |f0| = m2k. Then for all sufficiently
large odd integers n:

A positive proportion of degree-n forms f with leading coefficient f0
are such that z2 = f (x , y) has no primitive integer solutions.

More specifically, let µf0 =
∏

p|k(p−2 + (p − 1)p−N−1). The density

of f such that z2 = f (x , y) is soluble is ≤ µf0 + o(2−N).

Furthermore, a positive proportion of degree-n forms f are such that
z2 = f (x , y) fails Hasse principle due to Brauer-Manin obstruction.

E.g.: {p | k} ⊃ {2, 3, 7} =⇒ limn!∞ 1− µf0 + o(2−N) ≥ 99.9%
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2-Selmer Groups of Hyperelliptic Jacobians

Let f (x , y) ∈ Z[x , y ] be a separable form of even degree n ≥ 4;
consider hyperelliptic curve Cf : z2 = f (x , y) with Jacobian J(Cf )

Definition

2-cover of Cf (resp., J(Cf )) := cover of Cf (resp., J(Cf )) with
automorphism group isomorphic to J(Cf )[2] as Gal(Q/Q)-module

Variety X/Q is soluble if X (Q) 6= ∅, locally soluble if X (Qv ) 6= ∅ ∀v
2-Selmer group Sel2(J(Cf )) := {loc. sol. 2-covers of J(Cf )}

Motivation: rank of the 2-Selmer group ≥ rank of J(Cf )

Objective: apply parametrize-and-count strategy to study the
distribution of Sel2(J(Cf )) as f varies
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Objective: apply parametrize-and-count strategy to study the
distribution of Sel2(J(Cf )) as f varies
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2-Selmer Groups of Hyperelliptic Jacobians (cont’d.)

Warmup case: Cf (Q) 6= ∅. Then pullback via Cf ↪! J(Cf ) induces

{loc. sol. 2-covers of J(Cf )}↔ {loc. sol. 2-covers of Cf }

Theorem (Bhargava, 2013 (via Wood, 2010))

{loc. sol. 2-cover of Cf } ↪!

 (A,B) ∈ Z2 ⊗Z Sym2 Zn s.t.

det(xA + yB) = f (x , y)


/

(SLn /µ2)(Z)

Serious problem: If Cf (Q) = ∅, there may not exist
(A,B) ∈ Z2 ⊗Z Sym2 Zn with det(xA + yB) = f (x , y)!

Simple solution: Create a Q-rational point by replacing f with f mon

Cf mon(Q) 6= ∅, twist of Cf by Q(
√
f0)

J(Cf )[2] ' J(Cf mon)[2], which identifies elts of Sel2(J(Cf )) with
certain 2-covers of J(Cf mon)
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2-Selmer Groups of Hyperelliptic Jacobians (cont’d.)

Suppose Cf is loc. sol. if 4 | n. Given element of Sel2(J(Cf )), can
construct square root of class of (different)−1 of Rf

Combining with parametrization yields:

Sel2(J(Cf )) ↪!

 (A,B) ∈ Z2 ⊗Z Sym2 Zn s.t.

det(xA + yB) = f mon(x , y)


/

(SLn /µ2)(Z)

Theorem (Bhargava, Shankar, and S., 2021)

Consider forms f ∈ Z[x , y ] of even degree n ≥ 4 with fixed f0 6= 0 such
that Cf is loc. sol. if 4 | n. Then Avg # Sel2(J(Cf )) ≤? 6.

Robust under imposition of any finite set, and even very general
infinite sets, of congruence conditions

Confirms Poonen–Rains conjecture for even genus curves
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Statistical Applications to Forms with
Varying Leading Coefficient

Bhargava, Shankar, Swaminathan 22 / 34



Varying the Leading Coefficient

Goal: Compute Avg # Sel2(J(Cf )) over all f (loc. sol. if 4 | n)

Näıve approach: Determine asymptotic count of Selmer elements for
each fixed f0, and then simply sum over all possible values of f0

Given f0 ∈ Z \ {0}, let Sf0(X ) := {f : H∗(f ) < X , f (1, 0) = f0}, where

H∗(f ) = max
i
{|f i−10 fi |1/i}

Then we have∑
f ∈Sf0 (X )

# Sel2(J(Cf ))� f
− n(n−1)

2
0 X

n(n+1)
2 + error

Problem: natural height on binary forms is H(f ) = maxi{|fi |}
Sf0(X ) 6≈ {f : H(f ) < X , f (1, 0) = f0}, unless f0 � X

Turns out that contribution from f0 6� X is negligible
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Varying the Leading Coefficient (cont’d.)

Summing bound over f0 � X and ignoring error term, we find that
Avg # Sel2(J(Cf ))�

1

#{f : H(f ) < X}
∑
f0�X

f
− n(n−1)

2
0 X

n(n+1)
2 � 1

X n+1
× X n+1 = 1

Problem: Error term overtakes main term for f0 close to X

Multiple sources of error; worst is application of Davenport’s Lemma:
# of lattice points satisfying congruence conditions in a “round”
region ≈ the volume of the region times the probability that the
congruence conditions are satisfied
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Orbits of rk ≤ 1 mod f0

To control error, need to understand image of parametrization better

Recall image is a priori defined by congruence conditions mod f n−10 :
(A,B) with det(xA + yB) = f mon(x , y) arises if and only if

pi
(
1
f0
· −BA−1

)
∈ Matn×n(Z) for each i ∈ {1, . . . , n − 1}.

Theorem (Bhargava, Shankar, S., 2021)

Let (A,B) ∈ R2 ⊗R Sym2 R
n.

1 If detA = 1 and B has rk ≤ 1 mod f0 (i.e., B ∝ (linear form)2), then
(A,B) arises for some integral binary n-ic form f with f (1, 0) = f0.

2 Converse of (1) holds when Rf = OKf
or gcd(f0, f1) = 1.

3 If detA = 1 and ∧iB ≡ 0 (mod f i−10 ) for each i ∈ {2, . . . , n}, then
(A,B) arises for some integral binary n-ic form f with f (1, 0) = f0.

4 Let n = 4. ∃ (SL4 /µ2)(Q)-translate (A′,B ′) ∈ Z2 ⊗Z Sym2 Z4 such
that ∧iB ′ ≡ 0 (mod f i−10 ) for each i ∈ {2, 3, 4}
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Error from Davenport’s Lemma

X

X

m

m

m � X

m � X

Want to count lattice pts cut
out by congruence conditions
mod m in box of sidelength X

If m/X is tiny, Davenport’s
lemma gives good estimate

But orbits we want to count
are defined by conditions mod
f0, and f0 � X

If m � X and pts are sparse
or concentrated near edges of
box, error in Davenport’s
lemma will be huge
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Error from Davenport’s Lemma (cont’d.)

m � X

m � X

Want to prove that orbits arising from parametrization are somewhat
equidistributed in box, even when m = f0 � X

Let χ = indicator function mod f0 of image of parametrization

proving pts somewhat equidistributed⇐⇒ bounding
∑
B 6=0

|χ̂(B)|

Easy to show that if f0 = prime p, e.g., we have |χ̂(B)| � p4−
rk B
2
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2-Selmer Groups of Genus-1 Curves

Theorem (Bhargava, Shankar, and S., 2021)

When integral binary quartic forms f such that Cf is loc. sol. are ordered
by the max norm on their coefficients, we have Avg # Sel2(J(Cf )) ≤? 6.

Family of curves Cf , where f ranges over all binary quartic forms, has
redundancies: If f , f ′ are PGL2(Q)-equivalent, then Cf ' Cf ′

Crucially, average remains ≤? 6 even if quotient our family by the
action of PGL2(Q)
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2-Selmer Groups of Genus-1 Curves

Theorem (Bhargava, Shankar, and S., 2021)

When integral binary quartic forms f such that Cf is loc. sol. are ordered
by the max norm on their coefficients, we have Avg # Sel2(J(Cf )) ≤? 6.

Family of curves Cf , where f ranges over all binary quartic forms, has
redundancies: If f , f ′ are PGL2(Q)-equivalent, then Cf ' Cf ′

Crucially, average remains ≤? 6 even if quotient our family by the
action of PGL2(Q)

Bhargava, Shankar, Swaminathan 28 / 34



2-Selmer Groups of Genus-1 Curves

Theorem (Bhargava, Shankar, and S., 2021)

When integral binary quartic forms f such that Cf is loc. sol. are ordered
by the max norm on their coefficients, we have Avg # Sel2(J(Cf )) ≤? 6.

Family of curves Cf , where f ranges over all binary quartic forms, has
redundancies: If f , f ′ are PGL2(Q)-equivalent, then Cf ' Cf ′

Crucially, average remains ≤? 6 even if quotient our family by the
action of PGL2(Q)

Bhargava, Shankar, Swaminathan 28 / 34



2-Selmer Groups of Genus-1 Curves

Theorem (Bhargava, Shankar, and S., 2021)

When integral binary quartic forms f such that Cf is loc. sol. are ordered
by the max norm on their coefficients, we have Avg # Sel2(J(Cf )) ≤? 6.

Family of curves Cf , where f ranges over all binary quartic forms, has
redundancies: If f , f ′ are PGL2(Q)-equivalent, then Cf ' Cf ′

Crucially, average remains ≤? 6 even if quotient our family by the
action of PGL2(Q)

Bhargava, Shankar, Swaminathan 28 / 34



The Second Moment of the Size of the
2-Selmer Group of Elliptic Curves

Bhargava, Shankar, Swaminathan 29 / 34



Background on Elliptic Curves and their Selmer groups

Every elliptic curve E/Q is iso. to unique curve of the form

E = EI ,J : y2 = x3 + Ix + J,

where I , J ∈ Z such that p4 | I =⇒ p6 - J
Order elliptic curves by height: H(EI ,J) = max{4|I |3, 27J2}

Question

What is the distribution of Sel2(E ) as E ranges through all elliptic curves
ordered by height?

Conjecture (Poonen and Rains, 2010)

Avg # Sel2(E )m =
∏m

i=1(2i + 1)

E.g., Avg # Sel2(E ) = 3, and Avg # Sel2(E )2 = 15
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Progress toward the Conjecture

Theorem (Bhargava and Shankar, 2010)

Avg # Sel2(E ) = 3.

Proof proceeds by means of parametrize-and-count strategy

Let V = {binary quartic forms}; PGL2 y V , with invts. = Z〈I , J〉

Theorem (Birch and Swinnerton-Dyer, 1963)

The map f 7! Cf defines a bijection between the set of PGL2(Q)-orbits of
forms f ∈ V (Z) with PGL2-invariants I , J such that Cf is (loc.) sol. and
the set of isomorphism classes of (loc.) sol. 2-covers of EI ,J .

By abuse of notation, write f ∈ Sel2(E ) to denote corresponding
(PGL2(Q)-orbit of) integral binary quartic form
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The Second Moment

Theorem (Bhargava, Shankar, and S., 2021)

Avg # Sel2(E )2 ≤? 15.

Idea of the Proof:

Want to count pairs (f , f ′) ∈ Sel2(E )2

Fix f ∈ Sel2(E ), and consider 2 cases:
Case 1: f = id ∈ Sel2(E )

Heuristic: 3 choices for f ′ on avg
Proven by Bhargava–Shankar (2010)

Case 2: f 6= id ∈ Sel2(E )

Heuristic: 2 choices for f on avg, and notice E has marked non-trivial
2-Selmer element =⇒ 2× 3 = 6 choices for f ′ on avg
Sel2(E) ' Sel2(J(Cf )), so Avg#{choices for f’} = Avg#Sel2(J(Cf )),
where we work with binary quartic forms f up to PGL2(Q) action

Combining Cases 1, 2 =⇒ 1× 3 + 2× 6 = 15 choices for (f , f ′) on avg
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Class Group Application

Let f ∈ Z[x , y ] be monic integral binary cubic form such that
Rf = OKf

(so that Kf is a monogenic cubic field)

Class field theory =⇒ Cl(Rf )[2]∗ ↪! Sel2(y2 = f (x , 1))

Theorem (Bhargava, Shankar, and S., 2021)

When fields arising from monic integral binary cubic forms f with 3 (resp.,
1) real roots are ordered by height, Avgf # Cl(Rf )[2]2 ≤? 3 (resp., 6).

# real roots Avgf # Cl(Rf )[2] = Avgf # Cl(Rf )[2]2 ≤?

3 3/2 (5/4) 3 (15/8)

1 2 (3/2) 6 (3)
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Thank You!!
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