
Power values of pyramidal numbers

Ákos Pintér

joint work with Andrej Dujella, Kálmán Gy®ry, and Philippe
Michaud-Jacobs

Ákos Pintér Power values of pyramidal numbers



Prologue - Play with �gurate numbers

Generalized pyramidal numbers:

Sk
m(n) =

n(n + 1) · · · (n + k − 2)((m − 2)n −m + k + 2)
k!

Some important special cases: Binomial coe�cients

Sk
3 (n) =

n(n + 1) · · · (n + k − 2)(n + k − 1)
k!
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Pyramidal numbers

S3

m(n) =
n(n + 1)((m − 2)n −m + 5)

6
= Pyrm(n)

S3

3 (n) =
n(n + 1)(n + 2)

6
=

(
n + 2
3

)
= Pyr3(n)

S3

4 (n) =
n(n + 1)(2n + 1)

6
= 12 + 22 + . . .+ n2 = Pyr4(n)
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Two earlier diophantine results

On the power values of binomial coe�cients: Gy®ry, Acta
Aritmetica, 1996

On the power values of power sums: Bennett, Gy®ry, P,
Compositio, 2004
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Corollary

All the solutions of the equations(
x

3

)
= yn and 12 + 22 + . . .+ x2 = yn

in integers x ≥ 3, y > 1 and n ≥ 2 are

(x , y , n) = (50, 140, 2) and (x , y , n) = (24, 70, 2),

respectively.
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Let m be a �xed integer with m ≥ 3 and denote by

Pyrm(x) =
1
6
x(x + 1)((m − 2)x + 5−m)

the mth order pyramidal number.

In general, we consider the equation

Pyrm(x) =
1
6
x(x + 1)((m − 2)x + 5−m) = yn

in integers x , y ,m and n with x ≥ 1, y > 1,m ≥ 3 and n ≥ 2.
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n = 2, Dujella, Gy®ry, P, 2012, Acta Arithmetica

For n = 2, the problem is equivalent to �nding the integer points
on the elliptic curve

Em : y2 =
1
6
x(x + 1)((m − 2)x + 5−m)

with m ≥ 3,m 6= 5.

Trivial integral points: (0, 0), (−1, 0), (1, 1) and for m ≡ 2 mod 3(
2m − 10

3
,
(m − 5)(2m − 7)

9

)
.
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Non-trivial solutions I

Apart from the trivial points, in the range 3 ≤ m ≤ 100,m 6= 5, all
integer points (m, x , y) on Em are:

(3,−2, 0), (3, 2, 2), (3, 48, 140), (4, 24, 70), (7, 6, 14), (7, 49, 315),

(11, 1681, 84419), (13, 24, 160), (15, 2, 4), (15, 242, 5544),

(16, 49, 525), (20, 49, 595), (24, 2, 5), (24, 1681, 131979),

(28, 23, 230), (29, 8, 48), (33, 7, 42), (35, 2, 6), (35, 49, 805),

(41, 4, 20), (41, 49, 875), (45, 120, 3520), (48, 2, 7), (52, 96, 2716),

(53, 1681, 200941), (62, 49, 1085), (63, 2, 8), (63, 16, 204),

(68, 24, 390), (68, 343, 21070), (68, 57121, 45278311), (70, 6, 49),
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Non-trivial solutions II

(70, 49, 1155), (73, 833, 82705), (74, 8, 78), (75, 10, 110),

(76, 289, 17255), (76, 3479, 720650), (80, 2, 9), (80, 1681, 248501),

(89, 7, 70), (91, 4, 30), (91, 6, 56), (97, 49, 1365), (98, 8, 90),

(99, 2, 10), (99, 57121, 54891369).
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Observation: (m, x , y) = (15, 2, 22) and (m, x , y) = (17, 8, 62) for
m ≤ 50

The proof is based on the subroutine IntegralPoints of the program
package MAGMA and the subroutine integral points of the program
package SAGE.

This result is from 2012. Do you extend the resolution for larger m
by using up-to-date hardware and software?
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n ≥ 3, Dujella, Gy®ry, Michaud-Jacobs, and P, Acta

Arithmetica, submitted

For n ≥ 3 we have the following result:

All the solutions of the equation

Pyrm(x) =
1
6
x(x + 1)((m − 2)x + 5−m) = yn

in integers x , y ,m and n with x ≥ 1, y > 1, 3 ≤ m ≤ 50 and n ≥ 3
are

(m, x , y , n) = (5, 57121, 3107, 4), (7, 2, 2, 3), (15, 2, 2, 4), (17, 8, 6, 4),

(26, 2, 3, 3), (31, 2, 2, 5) and (50, 15, 30, 3).
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n=4

Pyrm(x) =
1
6
x(x + 1)((m − 2)x + 5−m) = y4 = z2

Using our observation we have two solutions

(m, x , y) = (15, 2, 2) and (17, 8, 6)

Ákos Pintér Power values of pyramidal numbers



m=5

Let m = 5 and (x , y , n) be a solution to the equation

x2(x + 1)
2

= yn

with x > 0, y > 1, and n ≥ 3. Then

(x , y , n) = (57121, 3107, 4).
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n = 4

We have to distinguish two cases: n = 4 or n ≥ 3 is odd.

For n = 4 we obtain
x2(x + 1) = 2y4.

One can see that x is odd, so

x2
(
x + 1
2

)
= y4,

and gcd(x2, (x + 1)/2) = 1.
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n=4

It follows that x2 = y4
1
and x + 1 = 2y4

2
, and

y21 + 1 = 2y42 .

This is Ljunggren's equation. It has two positive integer solutions

(y1, y2) = (1, 1), (239, 13).

Since y = y1y2 > 1 we get the unique solution

(x , y) = (y21 , y1y2) = (57121, 3107).
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n is odd

By an elementary manipulation we have binomial Thue-like
equation

axn − byn = 1,

with ab = 2α, where α is a positive integer.

From a known result of Bennett (see Bulletin of London Math.
Society, Products of consecutive integers, 2004) there is only trivial
solution xy = 1 to the Thue equations for every n.
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A trivial and important observation

The polynomial

x(x + 1)((m − 2)x + 5−m)

has three rational factors.

In the sequel we suppose that n = p ≥ 3 is a prime, and that
6 ≤ m ≤ 50
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Our problem is to resolve the equation

Pyrm(x) =
1
6
x(x + 1)((m − 2)x + 5−m) = yp.

We rewrite in the following form

x(x + 1)(amx − bm) = cmy
p,

where

(am, bm, cm) =

{(
m−2

3
, m−5

3
, 2
)

if m ≡ 2 (mod 3),

(m − 2,m − 5, 6) if m 6≡ 2 (mod 3).
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Simultaneous Thue equations

The previous equation leads us to consider the following system of
binomial Thue equations

Byp
2
− Ayp

1
= 1

amAy
p
1
− Cyp

3
= bm.

Here (A,B,C ) belongs to a �nitely and e�ectively determinable set
of triples depending on m.
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Upper bound for p

Let (x , y ,m, p) be a solution of the equation

x(x + 1)(amx − bm) = cmy
p

with y > 1. Then

p < 10676 · log
(
c2m · bm · (am + bm)

)
.

The proof is based on a Baker-type inequality developed by
Mignotte in an Acta Arithmetica's paper A note on the equation
axn − byn = c from 1996.
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Determination of the set of (A,B ,C )

We will distinguish six cases according to ord2(bm) = 0, 1, 2, 3, 4, 5

Example: ord2(bm) = 1

In this case

m ∈ {7, 11, 15, 19, 23, 27, 31, 35, 39, 47}.

We have

bm = 2 · p1r1 for some r1 ∈ {0, 1}, and p1 - cm is prime;

am + bm = p2 · q2s2 , for some s2 ∈ {0, 1}, and p2, q2 - cm are
prime.
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Then

A = 2α1 · 3β
1
· p1γ1 ,

B = 2α2 · 3β2 · p2γ2 · q2δ2 ,

C = 2α3 · 3β3 · p1p−γ1 · p2p−γ2 · q2p−δ2 ,

where
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(α1, α2, α3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)},

(β1, β2, β3) ∈


{(1, 0, 0), (0, 1, 0), (0, 0, 1)} if cm = 6,

{(0, 0, 0)} if cm = 2,

γ1 ∈ {0, r1, p − r1},

γ2 ∈ {0, 1, p − 1},

δ2 ∈ {0, s2, p − s2}.
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Local method
The principle

We consider the system of Thue equations

B yp
2
− Ayp

1
= 1

amAyp
1
− C yp

3
= bm.

for a �xed value of m and triple (A,B,C ). We will start by
considering this system mod `, for many auxiliary primes ` to try
and obtain a contradiction; since if the system of equations has no
local solution then it will certainly not have a global solution. When
the system of equations does not have a (global) solution, we found
this method to be extremely e�ective (as we see below).
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The algorithm

Fix a prime p > 2. We search for a prime ` such that ` = 2kp + 1
for some k ≥ 1 (i.e. ` ≡ 1 (mod p)), such that ` - ABC , and for
which the system of equations has no solution mod `. If we can
�nd such an `, then we have obtained a contradiction. The reason
for choosing ` of this form is that we have, for each i ∈ {1, 2, 3},
either ` | yi , or

(yi
p)2k = yi

`−1 ≡ 1 (mod `).

In particular, yi p ∈ µ2k(F`) ∪ {0}, where
µ2k(F`) = {α ∈ F` : α2k = 1}. We therefore only have 2k + 1
possibilities for yi p (mod `), and moreover the set µ2k(F`) can be
computed extremely quickly using a primitive root modulo `.
Indeed, if g is a primitive root modulo `, then

µ2k(F`) = {(gp)r : 0 ≤ r ≤ 2k − 1}.
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For each triple (A,B,C ), we searched for a prime ` by testing with
1 ≤ k ≤ 150.

For p > 5, with p less than the bound

10676 · log
(
c2m · bm · (am + bm)

)
,

apart from the cases where we have a global solution, and a single
case when p = 7, we succeeded in obtaining a contradiction.
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Example

3 · x5 − 2 · y5 = c

3 · x5 − 2 · y5 ≡ c (mod 11)

x5, y5 ∈ {0, 1, 10} (mod 11)

3 · x5 − 2 · y5 ∈ {0, 1, 2, 3, 5, 6, 8, 9, 10}
If c ≡ 4 or 7 (mod 11), then our binomial Thue equation has no
solution.
When p = 3 or p = 5, the method sometimes fails even when there
is no global solution. In these cases, as p is small we can simply
solve the two Thue equations using Magma and verify whether we
have a solution (y1, y2, y3) with y1, y2 > 0 (since x > 0). As
mentioned above, the local method also fails for p = 7 in a single
case. This is for the case m = 21 and (A,B) = (24 · 3, 1). Here we
also simply solve the corresponding Thue equations directly to
conclude there are no non-zero solutions.
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Local method fails

(I) A = 1,B = 2, and am − C = bm . Here we have a global
solution (y1, y2, y3) = (1, 1, 1) for all p, which comes from
the solution x = y = 1 to our original equation. However, in
this case, our �rst Thue equation is

2y2
p − y1

p = 1.

Applying a well-known result of Bennett (Rational
approximation to algebraic numbers of small height: the
Diophantine equation |axn + byn| = 1, appeared in Crelle's
Journal, 2001), we see that y1 = y2 = 1 for all p, so x = 1.

(II) A = 1 and C = am + bm. This admits the solution
(y1, y2, y3) = (−1, 0,−1).

(III) B = 1 and C = bm. This admits the solution
(y1, y2, y3) = (0, 1,−1).
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Modular method

It remains to deal with cases (II) and (III), outlined in Section 4, for
each 6 ≤ m ≤ 50. In each case, we have A = 1 or B = 1, and this
leads to an equation of the form

zp
1
− Dzp

2
= 1

for integers z1 and z2. The following result of Bartolomé and
Mih ilescu (International Journal Of Number Theory, 2017) will be
extremely helpful.

Let D > 1 and and let p be an odd prime satisfying

gcd(Rad(ϕ(D)), p) = 1.

Suppose z1 and z2 are integers satisfying equation zp
1
− Dzp

2
= 1

with |z2| > 1. Then either (z1, z2,D, p) = (18, 7, 17, 3) or
p > 163 · 1012.
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The bound for p is smaller than 106 in each case, so the previous
result reduces our problem to only needing to consider �nitely many
small primes in each case. For p = 3, 5, or 7 on can solve the
relevant Thue equations by Magma.

For p ≥ 11 and for each value of m we are then left with at most
one triple (A,B,C ) and at most one value of p that we are unable
to eliminate. Table 1 records these remaining values of p and
corresponding triples. We note that one of A and B is equal to 1,
and the other is exactly divisible by 2 in each case.
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m p A B C

15 11 1 2 · 3 · 2310 23

27 23 1 2 · 3 · 4722 47

28 11 2 · 3 · 2310 1 23

30 13 1 2 · 3 · 5312 53

33 29 1 2 · 3 · 5928 59

37 11 1 2 · 3 · 6710 67

38 11 1 2 · 3 · 2310 23

43 13 1 2 · 3 · 7912 79

45 41 1 2 · 3 · 8340 83

48 11 1 2 · 3 · 8910 89

Table 1. Remaining cases after applying Theorem by Bartolomé
and Mih ilescu and solving Thue equations for p ≤ 7.

Ákos Pintér Power values of pyramidal numbers



We rewrite our equation as

−1− Dzp
2
+ zp

1
= 0,

here p ≥ 11 and ord2(D) = 1. The Frey curve we associate to this
equation is

E : Y 2 = X (X + 1)(X − Dzp
2
).

The conductor, N of E is then given by

N =

{
2 · Rad2(Dz1z2) if 2 | z2,
25 · Rad2(Dz1z2) if 2 - z2.

Here, Rad2(Dz1z2) denotes the product of all odd primes dividing
Dz1z2.
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We write ρE ,p for the mod p Galois representation of E . Applying
standard level-lowering results, we obtain that

ρE ,p ∼ ρf ,p,

for f a newform at level Np, where

Np =

{
2 · Rad2(D) if 2 | z2,
25 · Rad2(D) if 2 - z2,

and p a prime above p in the coe�cient �eld of f .
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Final steps

It remains to deal with the cases appearing in Table. Suppose we
are in one of these cases, and let (y1, y2, y3) be a non-zero solution
to the original system of Thue equations. By rewriting yi

p as
−(−yi )p if necessary, we obtain an equation of the form

−1− Dzp
2
+ zp

1
= 0.

As described above, we attach a Frey curve E to this equation, and
level lower so that ρE ,p ∼ ρf ,p, for f a newform at level
2 · Rad2(D) or 25 · Rad2(D).
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Now, if ` | y1y2 is a prime, then it must be a prime of multiplicative
reduction for E , and by comparing traces of Frobenius, we have

`+ 1 ≡ ±c`(f ) (mod p),

where c`(f ) denotes the `th Fourier coe�cient of the newform f . It
follows that

p | Norm((`+ 1)2 − c`(f )
2)

We now search for a prime ` ≡ 1 (mod p), for which the system of
Thue equations has a unique solution mod `, and for which the
divisibility relation does not hold. If the system has a unique
solution mod `, then this solution must be the reduction mod ` of
the known global solution, for which y1y2 = 0, so either y1 ≡ 0
(mod `) or y2 ≡ 0 (mod `). So ` | y1y2, and we have therefore
obtained a contradiction if the previous divisibility relation does not
hold.
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m p f

15 11 138.2.a.d

27 23 282.2.a.e

28 11 138.2.a.d

30 13 318.2.a.g

33 29 354.2.a.h

37 11 402.2.a.g

38 11 �

43 13 474.2.a.e

45 41 498.2.a.g

48 11 534.2.a.f

Table 2. Remaining newforms. We use the notation of The LMFDB
collaboration, The L-functions and modular forms database
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For each newform f in each case we were able to �nd such a prime
`, apart from the cases listed in Table 2. For the remaining
newforms in this Table, we �nd that for any prime q - 2D that we
test,

p | Norm(q + 1− cq(f )).

This suggests that the representation ρf ,p is reducible, which would
be a contradiction. We proceed by applying Proposition 2.2 from a
paper by Bugeaud, Mignotte and Siksek (A multi-Frey approach to
some multi-parameter families of Diophantine equations, Canadian
Journal of Mathematics, 2008) to the newform f . We obtain that
p | #E (Fq) for any prime q - D, and so E must have a rational
subgroup of order p, a contradiction since p ≥ 11.
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Prologue�Two remarks

Sk
m(n) =

n(n + 1) · · · (n + k − 2)((m − 2)n −m + k + 2)
k!

S2

m(n) =
n · ((m − 2)n −m + 4)

2
= Polm(n)

Polm(x) = y z

in integers m, x , y , z with natural conditions.

Resolution for m = 10 A Unique Perfect Power Decagonal Number
by Philippe Michaud-Rodgers, Bull. Austral Math. Soc. 2021.

Resolution for m ∈ {3, 5, 6, 8, 20}, Kim, Park, P, Bull. Austral
Math. Soc. 2013.
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Thank you very much

for your attention!
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