

Power values of pyramidal numbers

Ákos Pintér

joint work with Andrej Dujella, Kálmán Győry, and Philippe
Michaud-Jacobs

Prologue - Play with figurate numbers

Generalized pyramidal numbers:

$$S_m^k(n) = \frac{n(n+1)\cdots(n+k-2)((m-2)n-m+k+2)}{k!}$$

Some important special cases: Binomial coefficients

$$S_3^k(n) = \frac{n(n+1)\cdots(n+k-2)(n+k-1)}{k!}$$

Pyramidal numbers

$$S_m^3(n) = \frac{n(n+1)((m-2)n - m + 5)}{6} = \text{Pyr}_m(n)$$

$$S_3^3(n) = \frac{n(n+1)(n+2)}{6} = \binom{n+2}{3} = \text{Pyr}_3(n)$$

$$S_4^3(n) = \frac{n(n+1)(2n+1)}{6} = 1^2 + 2^2 + \dots + n^2 = \text{Pyr}_4(n)$$

Two earlier diophantine results

On the power values of binomial coefficients: Győry, Acta
Aritmetica, 1996

On the power values of power sums: Bennett, Győry, P,
Compositio, 2004

Corollary

All the solutions of the equations

$$\binom{x}{3} = y^n \quad \text{and} \quad 1^2 + 2^2 + \dots + x^2 = y^n$$

in integers $x \geq 3$, $y > 1$ and $n \geq 2$ are

$$(x, y, n) = (50, 140, 2) \quad \text{and} \quad (x, y, n) = (24, 70, 2),$$

respectively.

Let m be a fixed integer with $m \geq 3$ and denote by

$$\text{Pyr}_m(x) = \frac{1}{6}x(x+1)((m-2)x+5-m)$$

the m th order pyramidal number.

In general, we consider the equation

$$\text{Pyr}_m(x) = \frac{1}{6}x(x+1)((m-2)x+5-m) = y^n$$

in integers x, y, m and n with $x \geq 1, y > 1, m \geq 3$ and $n \geq 2$.

For $n = 2$, the problem is equivalent to finding the integer points on the elliptic curve

$$E_m : y^2 = \frac{1}{6}x(x+1)((m-2)x+5-m)$$

with $m \geq 3, m \neq 5$.

Trivial integral points: $(0, 0), (-1, 0), (1, 1)$ and for $m \equiv 2 \pmod{3}$

$$\left(\frac{2m-10}{3}, \frac{(m-5)(2m-7)}{9} \right).$$

Non-trivial solutions I

Apart from the trivial points, in the range $3 \leq m \leq 100$, $m \neq 5$, all integer points (m, x, y) on E_m are:

- $(3, -2, 0), (3, 2, 2), (3, 48, 140), (4, 24, 70), (7, 6, 14), (7, 49, 315),$
- $(11, 1681, 84419), (13, 24, 160), \underline{(15, 2, 4)}, (15, 242, 5544),$
- $(16, 49, 525), (20, 49, 595), (24, 2, 5), (24, 1681, 131979),$
- $(28, 23, 230), (29, 8, 48), (33, 7, 42), (35, 2, 6), (35, 49, 805),$
- $(41, 4, 20), (41, 49, 875), (45, 120, 3520), (48, 2, 7), (52, 96, 2716),$
- $(53, 1681, 200941), (62, 49, 1085), (63, 2, 8), (63, 16, 204),$
- $(68, 24, 390), (68, 343, 21070), (68, 57121, 45278311), \underline{(70, 6, 49)},$

Non-trivial solutions II

$(70, 49, 1155), (73, 833, 82705), (74, 8, 78), (75, 10, 110),$
 $(76, 289, 17255), (76, 3479, 720650), \underline{(80, 2, 9)}, (80, 1681, 248501),$
 $(89, 7, 70), (91, 4, 30), (91, 6, 56), (97, 49, 1365), (98, 8, 90),$
 $(99, 2, 10), (99, 57121, 54891369).$

Observation: $(m, x, y) = (15, 2, 2^2)$ and $(m, x, y) = (17, 8, 6^2)$ for $m \leq 50$

The proof is based on the subroutine `IntegralPoints` of the program package MAGMA and the subroutine `integral points` of the program package SAGE.

This result is from 2012. Do you extend the resolution for larger m by using up-to-date hardware and software?

$n \geq 3$, Dujella, Győry, Michaud-Jacobs, and P, Acta Arithmetica, submitted

For $n \geq 3$ we have the following result:

All the solutions of the equation

$$\text{Pyr}_m(x) = \frac{1}{6}x(x+1)((m-2)x+5-m) = y^n$$

in integers x, y, m and n with $x \geq 1, y > 1, 3 \leq m \leq 50$ and $n \geq 3$ are

$$(m, x, y, n) = (5, 57121, 3107, 4), (7, 2, 2, 3), (15, 2, 2, 4), (17, 8, 6, 4), \\ (26, 2, 3, 3), (31, 2, 2, 5) \text{ and } (50, 15, 30, 3).$$

$$\text{Pyr}_m(x) = \frac{1}{6}x(x+1)((m-2)x+5-m) = y^4 = z^2$$

Using our observation we have two solutions

$$(m, x, y) = (15, 2, 2) \text{ and } (17, 8, 6)$$

$m=5$

Let $m = 5$ and (x, y, n) be a solution to the equation

$$\frac{x^2(x+1)}{2} = y^n$$

with $x > 0, y > 1$, and $n \geq 3$. Then

$$(x, y, n) = (57121, 3107, 4).$$

$$n = 4$$

We have to distinguish two cases: $n = 4$ or $n \geq 3$ is odd.

For $n = 4$ we obtain

$$x^2(x + 1) = 2y^4.$$

One can see that x is odd, so

$$x^2 \left(\frac{x + 1}{2} \right) = y^4,$$

and $\gcd(x^2, (x + 1)/2) = 1$.

It follows that $x^2 = y_1^4$ and $x + 1 = 2y_2^4$, and

$$y_1^2 + 1 = 2y_2^4.$$

This is Ljunggren's equation. It has two positive integer solutions

$$(y_1, y_2) = (1, 1), (239, 13).$$

Since $y = y_1y_2 > 1$ we get the unique solution

$$(x, y) = (y_1^2, y_1y_2) = (57121, 3107).$$

n is odd

By an elementary manipulation we have binomial Thue-like equation

$$ax^n - by^n = 1,$$

with $ab = 2^\alpha$, where α is a positive integer.

From a known result of Bennett (see Bulletin of London Math. Society, Products of consecutive integers, 2004) there is only trivial solution $xy = 1$ to the Thue equations for every n .

A trivial and important observation

The polynomial

$$x(x+1)((m-2)x+5-m)$$

has three rational factors.

In the sequel we suppose that $n = p \geq 3$ is a prime, and that $6 \leq m \leq 50$

Our problem is to resolve the equation

$$\text{Pyr}_m(x) = \frac{1}{6}x(x+1)((m-2)x+5-m) = y^p.$$

We rewrite in the following form

$$x(x+1)(a_m x - b_m) = c_m y^p,$$

where

$$(a_m, b_m, c_m) = \begin{cases} \left(\frac{m-2}{3}, \frac{m-5}{3}, 2\right) & \text{if } m \equiv 2 \pmod{3}, \\ (m-2, m-5, 6) & \text{if } m \not\equiv 2 \pmod{3}. \end{cases}$$

Simultaneous Thue equations

The previous equation leads us to consider the following system of binomial Thue equations

$$By_2^p - Ay_1^p = 1$$

$$a_m Ay_1^p - Cy_3^p = b_m.$$

Here (A, B, C) belongs to a finitely and effectively determinable set of triples depending on m .

Upper bound for p

Let (x, y, m, p) be a solution of the equation

$$x(x+1)(a_m x - b_m) = c_m y^p$$

with $y > 1$. Then

$$p < 10676 \cdot \log (c_m^2 \cdot b_m \cdot (a_m + b_m)) .$$

The proof is based on a Baker-type inequality developed by Mignotte in an Acta Arithmetica's paper A note on the equation $ax^n - by^n = c$ from 1996.

Determination of the set of (A, B, C)

We will distinguish six cases according to $\text{ord}_2(b_m) = 0, 1, 2, 3, 4, 5$

Example: $\text{ord}_2(b_m) = 1$

In this case

$$m \in \{7, 11, 15, 19, 23, 27, 31, 35, 39, 47\}.$$

We have

- $b_m = 2 \cdot p_1^{r_1}$ for some $r_1 \in \{0, 1\}$, and $p_1 \nmid c_m$ is prime;
- $a_m + b_m = p_2 \cdot q_2^{s_2}$, for some $s_2 \in \{0, 1\}$, and $p_2, q_2 \nmid c_m$ are prime.

Then

$$A = 2^{\alpha_1} \cdot 3_1^{\beta} \cdot p_1^{\gamma_1},$$

$$B = 2^{\alpha_2} \cdot 3^{\beta_2} \cdot p_2^{\gamma_2} \cdot q_2^{\delta_2},$$

$$C = 2^{\alpha_3} \cdot 3^{\beta_3} \cdot p_1^{p-\gamma_1} \cdot p_2^{p-\gamma_2} \cdot q_2^{p-\delta_2},$$

where

$$(\alpha_1, \alpha_2, \alpha_3) \in \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\},$$

$$(\beta_1, \beta_2, \beta_3) \in \begin{cases} \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\} & \text{if } c_m = 6, \\ \{(0, 0, 0)\} & \text{if } c_m = 2, \end{cases}$$

$$\gamma_1 \in \{0, r_1, p - r_1\},$$

$$\gamma_2 \in \{0, 1, p - 1\},$$

$$\delta_2 \in \{0, s_2, p - s_2\}.$$

We consider the system of Thue equations

$$\begin{aligned}By_2^p - Ay_1^p &= 1 \\a_m A y_1^p - C y_3^p &= b_m.\end{aligned}$$

for a fixed value of m and triple (A, B, C) . We will start by considering this system mod ℓ , for many auxiliary primes ℓ to try and obtain a contradiction; since if the system of equations has no local solution then it will certainly not have a global solution. When the system of equations does not have a (global) solution, we found this method to be extremely effective (as we see below).

The algorithm

Fix a prime $p > 2$. We search for a prime ℓ such that $\ell = 2kp + 1$ for some $k \geq 1$ (i.e. $\ell \equiv 1 \pmod{p}$), such that $\ell \nmid ABC$, and for which the system of equations has no solution mod ℓ . If we can find such an ℓ , then we have obtained a contradiction. The reason for choosing ℓ of this form is that we have, for each $i \in \{1, 2, 3\}$, either $\ell \mid y_i$, or

$$(y_i^p)^{2k} = y_i^{\ell-1} \equiv 1 \pmod{\ell}.$$

In particular, $y_i^p \in \mu_{2k}(\mathbb{F}_\ell) \cup \{0\}$, where $\mu_{2k}(\mathbb{F}_\ell) = \{\alpha \in \mathbb{F}_\ell : \alpha^{2k} = 1\}$. We therefore only have $2k + 1$ possibilities for $y_i^p \pmod{\ell}$, and moreover the set $\mu_{2k}(\mathbb{F}_\ell)$ can be computed extremely quickly using a primitive root modulo ℓ . Indeed, if g is a primitive root modulo ℓ , then

$$\mu_{2k}(\mathbb{F}_\ell) = \{(g^p)^r : 0 \leq r \leq 2k - 1\}.$$

For each triple (A, B, C) , we searched for a prime ℓ by testing with $1 \leq k \leq 150$.

For $p > 5$, with p less than the bound

$$10676 \cdot \log (c_m^2 \cdot b_m \cdot (a_m + b_m)) ,$$

apart from the cases where we have a global solution, and a single case when $p = 7$, we succeeded in obtaining a contradiction.

Example

$$\begin{aligned}3 \cdot x^5 - 2 \cdot y^5 &= c \\3 \cdot x^5 - 2 \cdot y^5 &\equiv c \pmod{11} \\x^5, y^5 &\in \{0, 1, 10\} \pmod{11} \\3 \cdot x^5 - 2 \cdot y^5 &\in \{0, 1, 2, 3, 5, 6, 8, 9, 10\}\end{aligned}$$

If $c \equiv 4$ or $7 \pmod{11}$, then our binomial Thue equation has no solution.

When $p = 3$ or $p = 5$, the method sometimes fails even when there is no global solution. In these cases, as p is small we can simply solve the two Thue equations using Magma and verify whether we have a solution (y_1, y_2, y_3) with $y_1, y_2 > 0$ (since $x > 0$). As mentioned above, the local method also fails for $p = 7$ in a single case. This is for the case $m = 21$ and $(A, B) = (2^4 \cdot 3, 1)$. Here we also simply solve the corresponding Thue equations directly to conclude there are no non-zero solutions.

Local method fails

(I) $A = 1, B = 2$, and $a_m - C = b_m$. Here we have a global solution $(y_1, y_2, y_3) = (1, 1, 1)$ for all p , which comes from the solution $x = y = 1$ to our original equation. However, in this case, our first Thue equation is

$$2y_2^p - y_1^p = 1.$$

Applying a well-known result of Bennett (Rational approximation to algebraic numbers of small height: the Diophantine equation $|ax^n + by^n| = 1$, appeared in Crelle's Journal, 2001), we see that $y_1 = y_2 = 1$ for all p , so $x = 1$.

(II) $A = 1$ and $C = a_m + b_m$. This admits the solution $(y_1, y_2, y_3) = (-1, 0, -1)$.

(III) $B = 1$ and $C = b_m$. This admits the solution $(y_1, y_2, y_3) = (0, 1, -1)$.

Modular method

It remains to deal with cases (II) and (III), outlined in Section 4, for each $6 \leq m \leq 50$. In each case, we have $A = 1$ or $B = 1$, and this leads to an equation of the form

$$z_1^p - Dz_2^p = 1$$

for integers z_1 and z_2 . The following result of Bartolomé and Mihăilescu (International Journal Of Number Theory, 2017) will be extremely helpful.

Let $D > 1$ and let p be an odd prime satisfying

$$\gcd(\text{Rad}(\varphi(D)), p) = 1.$$

Suppose z_1 and z_2 are integers satisfying equation $z_1^p - Dz_2^p = 1$ with $|z_2| > 1$. Then either $(z_1, z_2, D, p) = (18, 7, 17, 3)$ or $p > 163 \cdot 10^{12}$.

The bound for p is smaller than 10^6 in each case, so the previous result reduces our problem to only needing to consider finitely many small primes in each case. For $p = 3, 5$, or 7 one can solve the relevant Thue equations by Magma.

For $p \geq 11$ and for each value of m we are then left with at most one triple (A, B, C) and at most one value of p that we are unable to eliminate. Table 1 records these remaining values of p and corresponding triples. We note that one of A and B is equal to 1, and the other is exactly divisible by 2 in each case.

m	p	A	B	C
15	11	1	$2 \cdot 3 \cdot 23^{10}$	23
27	23	1	$2 \cdot 3 \cdot 47^{22}$	47
28	11	$2 \cdot 3 \cdot 23^{10}$	1	23
30	13	1	$2 \cdot 3 \cdot 53^{12}$	53
33	29	1	$2 \cdot 3 \cdot 59^{28}$	59
37	11	1	$2 \cdot 3 \cdot 67^{10}$	67
38	11	1	$2 \cdot 3 \cdot 23^{10}$	23
43	13	1	$2 \cdot 3 \cdot 79^{12}$	79
45	41	1	$2 \cdot 3 \cdot 83^{40}$	83
48	11	1	$2 \cdot 3 \cdot 89^{10}$	89

Table 1. Remaining cases after applying Theorem by Bartolomé and Mihăilescu and solving Thue equations for $p \leq 7$.

We rewrite our equation as

$$-1 - Dz_2^p + z_1^p = 0,$$

here $p \geq 11$ and $\text{ord}_2(D) = 1$. The Frey curve we associate to this equation is

$$E : Y^2 = X(X + 1)(X - Dz_2^p).$$

The conductor, N of E is then given by

$$N = \begin{cases} 2 \cdot \text{Rad}_2(Dz_1z_2) & \text{if } 2 \mid z_2, \\ 2^5 \cdot \text{Rad}_2(Dz_1z_2) & \text{if } 2 \nmid z_2. \end{cases}$$

Here, $\text{Rad}_2(Dz_1z_2)$ denotes the product of all *odd* primes dividing Dz_1z_2 .

We write $\bar{\rho}_{E,p}$ for the mod p Galois representation of E . Applying standard level-lowering results, we obtain that

$$\bar{\rho}_{E,p} \sim \bar{\rho}_{f,\mathfrak{p}},$$

for f a newform at level N_p , where

$$N_p = \begin{cases} 2 \cdot \text{Rad}_2(D) & \text{if } 2 \mid z_2, \\ 2^5 \cdot \text{Rad}_2(D) & \text{if } 2 \nmid z_2, \end{cases}$$

and \mathfrak{p} a prime above p in the coefficient field of f .

Final steps

It remains to deal with the cases appearing in Table. Suppose we are in one of these cases, and let (y_1, y_2, y_3) be a non-zero solution to the original system of Thue equations. By rewriting y_i^P as $-(-y_i)^P$ if necessary, we obtain an equation of the form

$$-1 - Dz_2^P + z_1^P = 0.$$

As described above, we attach a Frey curve E to this equation, and level lower so that $\bar{\rho}_{E,p} \sim \bar{\rho}_{f,p}$, for f a newform at level $2 \cdot \text{Rad}_2(D)$ or $2^5 \cdot \text{Rad}_2(D)$.

Now, if $\ell \mid y_1 y_2$ is a prime, then it must be a prime of multiplicative reduction for E , and by comparing traces of Frobenius, we have

$$\ell + 1 \equiv \pm c_\ell(f) \pmod{p},$$

where $c_\ell(f)$ denotes the ℓ th Fourier coefficient of the newform f . It follows that

$$p \mid \text{Norm}((\ell + 1)^2 - c_\ell(f)^2)$$

We now search for a prime $\ell \equiv 1 \pmod{p}$, for which the system of Thue equations has a unique solution mod ℓ , and for which the divisibility relation does not hold. If the system has a unique solution mod ℓ , then this solution must be the reduction mod ℓ of the known global solution, for which $y_1 y_2 = 0$, so either $y_1 \equiv 0 \pmod{\ell}$ or $y_2 \equiv 0 \pmod{\ell}$. So $\ell \mid y_1 y_2$, and we have therefore obtained a contradiction if the previous divisibility relation does not hold.

m	p	f
15	11	138.2.a.d
27	23	282.2.a.e
28	11	138.2.a.d
30	13	318.2.a.g
33	29	354.2.a.h
37	11	402.2.a.g
38	11	—
43	13	474.2.a.e
45	41	498.2.a.g
48	11	534.2.a.f

Table 2. Remaining newforms. We use the notation of The LMFDB collaboration, The L-functions and modular forms database

For each newform f in each case we were able to find such a prime ℓ , apart from the cases listed in Table 2. For the remaining newforms in this Table, we find that for any prime $q \nmid 2D$ that we test,

$$p \mid \text{Norm}(q + 1 - c_q(f)).$$

This suggests that the representation $\bar{\rho}_{f,p}$ is reducible, which would be a contradiction. We proceed by applying Proposition 2.2 from a paper by Bugeaud, Mignotte and Siksek (A multi-Frey approach to some multi-parameter families of Diophantine equations, Canadian Journal of Mathematics, 2008) to the newform f . We obtain that $p \mid \#E(\mathbb{F}_q)$ for any prime $q \nmid D$, and so E must have a rational subgroup of order p , a contradiction since $p \geq 11$.

Prologue–Two remarks

$$S_m^k(n) = \frac{n(n+1)\cdots(n+k-2)((m-2)n-m+k+2)}{k!}$$

$$S_m^2(n) = \frac{n \cdot ((m-2)n-m+4)}{2} = \text{Pol}_m(n)$$

$$\text{Pol}_m(x) = y^z$$

in integers m, x, y, z with natural conditions.

Resolution for $m = 10$ A Unique Perfect Power Decagonal Number
by Philippe Michaud-Rodgers, Bull. Austral Math. Soc. 2021.

Resolution for $m \in \{3, 5, 6, 8, 20\}$, Kim, Park, P, Bull. Austral
Math. Soc. 2013.

Thank you very much
for your attention!