Integer Matrices with a Given Characteristic Polynomial and Multiplicative Dependence

Alina Ostafe

Joint work with Igor Shparlinski

The University of New South Wales

Set-up and motivation

We look at some questions of arithmetic statistics for matrices from

$$\mathcal{M}_n\left(\mathbb{Z}\right) = \left\{ A = (a_{ij})_{i,j=1}^n : \ a_{ij} \in \mathbb{Z} \right\}.$$

We say that an s-tuple of non-singular matrices $(A_1,\ldots,A_s)\in\mathcal{M}_n\left(\mathbb{Z}\right)^s$ is multiplicatively dependent if there is a non-zero vector $(k_1,\ldots,k_s)\in\mathbb{Z}^s$ such that

$$A_1^{k_1} \dots A_s^{k_s} = I_n,$$

where I_n is the $n \times n$ identity matrix.

Motivation

We say that $\mathbf{a}=(a_1,\ldots,a_s)\in\mathbb{C}^s$ is multiplicatively dependent if there is a non-zero vector $(k_1,\ldots,k_s)\in\mathbb{Z}^s$ for which

$$a_1^{k_1}\cdots a_s^{k_s}=1.$$

Pappalardi, Sha, Shparlinski & Stewart (2018): an asymptotic formula for the number of multiplicatively dependent s-tuples of integers in the cube $[-H,H]^s$, and similar results for algebraic numbers of bounded degree/in a given number field, and of height at most H.

Stewart (2019), Konyagin, Sha, Shparlinski & Stewart (2020): studied the distribution of multiplicatively dependent vectors in \mathbb{R}^n and \mathbb{C}^n .

This work inspired by mathematical discussions between *Igor Shparlinski*, *Cam Stewart*, *Humpback* and myself:

AMS Meeting, Hawaii, March 2019

Comment

The matrix version of this problem looks *typographically* very similarly however it is of very different spirit and requires different tools due to:

- Non-commutativity of matrix multiplication (e.g., multiplicative dependence may change if the entries of (A_1, \ldots, A_s) are permuted).
- One of the main tools used in the number case: the existence and uniqueness of prime number factorisation, is missing.
- Non-commutativity suggests the following, alternative definition of multiplicative dependence, which we call *non-freeness*. We say that $(A_1,\ldots,A_s)\in\mathcal{M}_n\left(\mathbb{Z}\right)^s$ is **not free** if there is a nontrivial word (i.e., without occurrences of $A_iA_i^{-1}$) of length $L\geq 1$ of the form

$$A_{i_1}^{\pm 1} \cdots A_{i_L}^{\pm 1} = I_n.$$

What do we count?

For a real $H \geq 1$, let

$$\mathcal{M}_n\left(\mathbb{Z};H\right) = \left\{ A = (a_{ij})_{i,j=1}^n : |a_{ij}| \le H \right\}.$$

In particular, $\#\mathcal{M}_n\left(\mathbb{Z};H\right)\sim (2H)^{n^2}$.

We are interested in the following quantities

$$\mathcal{N}_{n,s}(H) = \{ (A_1, \dots, A_s) \in \mathcal{M}_n (\mathbb{Z}; H)^s : (A_1, \dots, A_s) \text{ is mult. dep.} \},$$

$$\mathcal{N}_{n,s}^*(H) = \{ (A_1, \dots, A_s) \in \mathcal{N}_{n,s}(H) :$$

$$(A_1, \dots, A_s) \text{ is mult. dep. of maximal rank} \},$$

where maximal rank = any sub-tuple $(A_{i_1}, \ldots, A_{i_t})$ of length t < s with $1 \le i_1 < \ldots < i_t \le s$ is mult. indep.

Recalling the non-commutativity of matrices and the notion of *non-freeness*, it is also interesting to bound the cardinality of

$$\mathcal{F}_{n,s}(H) = \{(A_1, \dots, A_s) \in \mathcal{M}_n (\mathbb{Z}; H)^s : (A_1, \dots, A_s) \text{ is non-free} \}.$$

Unfortunately, we could not even prove $\#\mathcal{F}_{n,s}(H) = o\left(H^{sn^2}\right)$.

However, we can obtain some bounds on

$$\mathcal{K}_{n,s}(H) = \{(A_1, \dots, A_s) \in \mathcal{F}_n(H) : \text{ and satisfies } (\bigstar)\}$$

 $(\bigstar): \text{ If } A_{i_1}^{\pm 1} \cdots A_{i_L}^{\pm 1} = I_n, i_1, \dots, i_L \in \{1, \dots, s\}, \text{ then for some } i = 1, \dots, s \text{ the } \pm 1 \text{ exponents of } A_i \text{ do not sum up to zero.}$

This looks rather convoluted, but it has a natural interpretation of counting $(A_1, \ldots, A_s) \in \mathcal{M}_n\left(\mathbb{Z}; H\right)^s$ for which the *abelianisation map* $G \to G/[G,G],$

of the group G generated by $A_1^{\pm 1}, \ldots, A_s^{\pm 1}$, where [G, G] is the *commutator subgroup* of G, has a nontrivial kernel.

Goal

We want good lower and upper bounds for:

- $\#\mathcal{N}_{n,s}(H)$, mult. dep. matrices; \checkmark
- $\#\mathcal{N}_{n,s}(H)^*$, mult. dep. matrices of maximal rank; \checkmark
- $\#\mathcal{F}_{n,s}(H)$, non-free matrices; ???
- $\#\mathcal{K}_{n,s}(H)$, matrices with a nontrivial abelinisation kernel.

For n=1 these questions are **exactly** the same as studied by *Pappalardi, Sha, Shparlinski & Stewart* (2018), e.g.,

$$\#\mathcal{F}_{1,s}(H)=(2H+1)^s$$
 and $\mathcal{K}_{1,s}(H)=\mathcal{N}_{1,s}(H).$

However, the matrix setting is very different and needs new ideas. Recall:

- Non-commutativity of matrix multiplication;
- Absence of the fundamental theorem of arithmetic, i.e. prime number factorisation.

Observation

Taking determinants in

$$A_1^{k_1}\cdots A_s^{k_s}=I_n\quad\text{and}\quad A_{i_1}^{\pm 1}\cdots A_{i_L}^{\pm 1}=I_n$$

helps to overcome both obstructions.

Generally speaking we *want* results which are **stronger** than what this approach gives.

... this does not mean we can always get such results, but in some cases we can indeed.

Here is how the above approach works.

- Taking determinants we obtain a multiplicative relation between $\det A_1, \ldots, \det A_s$.
- \bullet Count the number of s-tuples of integers in $[-n!H^n,n!H^n]$ which are multiplicatively dependent.
- Finally, we need to estimate the number matrices $A \in \mathcal{M}_n(\mathbb{Z}; H)$ with a given determinant. Thus, we need to know the size of

$$D_n(H;d) = \#\mathcal{D}_n(H;d)$$

of the set

$$\mathcal{D}_n(H;d) = \{ A \in \mathcal{M}_n (\mathbb{Z}; H) : \det A = d \}.$$

Matrices with a given determinant

The size of the set

$$\widetilde{\mathcal{D}}_n(H;d) = \{A \in \mathcal{M}_n\left(\mathbb{Z}\right): \ \|A\|_2 \le H \ \text{and} \ \det A = d\}$$

has been studied by:

- Duke, Rudnick & Sarnak (1993) for $d \neq 0$,
- *Katznelson* (1993) for d = 0,

who, for a fixed d gave asymptotic formula with the main terms of orders

$$H^{n^2-n}$$
 $(d \neq 0)$ and $H^{n^2-n} \log H$ $(d = 0)$.

However, these results are not sufficient for us as we need a uniform with respect to d upper bound:

Shparlinski (2010)

Uniformly over d, we have $D_n(H;d) \ll H^{n^2-n} \log H$.

As usual: $A \ll B \iff B \gg A \iff A = O(B)$.

Matrices with a given characteristic polynomial

It turns out that to go beyond the above approach, we need to study

$$R_n(H;f) = \#\mathcal{R}_n(H;f)$$

where $f \in \mathbb{Z}[X]$ and

 $\mathcal{R}_n(H;f)=\{A\in\mathcal{M}_n\left(\mathbb{Z};H
ight):\ f\ \ \text{is the characteristic polynomial of}\ \ A\}.$

Eskin, Mozes & Shah (1996): asymptotic formula for a variant $\widetilde{R}_n(H;f)$ of $R_n(H;f)$, where the matrices are ordered by the L_2 -norm rather than by the L_∞ -norm,

$$\widetilde{R}_n(H;f) = (C(f) + o(1))H^{n(n-1)/2},$$

with C(f) > 0 depending on a *fixed* monic irreducible $f \in \mathbb{Z}[X]$.

Shah (2000), Wei & Xu (2016): some variants of the above.

Unfortunately this is not sufficient for our purposes because we need an upper bound which:

- holds for arbitrary $f \in \mathbb{Z}[X]$, which is not necessary irreducible;
- \bullet is uniform with respect to the coefficients of f.

Conjecture (A.O. & Shparlinski)

Uniformly over polynomials f we have

$$R_n(H;f) \le H^{n(n-1)/2+o(1)}, \quad \text{as } H \to \infty.$$

Since we obviously have

$$R_n(H;f) \le D_n(H;d) = \#\{A \in \mathcal{M}_n(\mathbb{Z};H) : \det A = d\}$$

and

Shparlinski (2010)

Uniformly over d, we have $D_{n,s}(H;d) \ll H^{n^2-n} \log H$.

we call the bound

$$R_n(H;f) \le H^{n^2 - n + o(1)}$$

trivial.

We define γ_n as the largest real number such that uniformly over polynomials f we have

$$R_n(H;f) \le H^{n^2-n-\gamma_n+o(1)}, \quad \text{as } H \to \infty.$$

Remark: $\gamma_n = n(n-1)/2$ corresponds to the above *Conjecture*, while by *Shparlinski* (2010) it always holds with $\gamma_n = 0$.

What we can prove is somewhere *in-between* ... but unfortunately it is not in the middle, it is closer to the bottom end.

The above holds with

$$\gamma_2 = \gamma_3 = 1$$
 and $\gamma_n \ge \frac{1}{(n-3)^2}$, for $n \ge 4$.

Remark: Only $\gamma_2=1$ corresponds the above Conjecture: $\gamma_n=n(n-1)/2$.

We get $\gamma_n \approx 1/n^2$ while we expect $\gamma_n \approx n^2/2$.

Bounds

For n = 2, 3 we estimate $R_n(H; f)$ directly:

A.O. & Shparlinski (2022)

For
$$n=2,3$$
, uniformly over $f\in\mathbb{Z}[X]$ with $\deg f=n$ we have $R_2(H;f)\leq H^{1+o(1)}$ and $R_3(H;f)\leq H^{5+o(1)}$.

For $n \ge 4$ we count matrices with fixed determinant and trace, i.e., $S_n(H;d,t) = \#S_n(H;d,t)$

where
$$S_n(H; d, t) = \{A \in \mathcal{M}_n(\mathbb{Z}; H) : \det A = d \text{ and } \operatorname{Tr}(A) = t\}.$$

A.O. & Shparlinski (2022)

For $n \geq 4$, uniformly over d and t we have

$$S_n(H;d,t) \ll H^{n^2-n-\sigma_n}, \qquad n \ge 4,$$

where $\sigma_n = 1/(n-3)^2$.

Ideas behind the proofs

★ For n = 2, 3 we write the equations for Tr(A), $Tr(A^2)$ and $\det A$, eliminate variables, use a bound on the divisor function, etc.

 \star For $n \geq 4$ we use very different approach, which we sketch below.

For a vector \mathbf{u} (of any dimension), we use $|\mathbf{u}|$ for its L_{∞} -norm.

We write $A \in \mathcal{M}_n(\mathbb{Z}; H)$ in the form

$$A = \begin{pmatrix} R^* & \mathbf{a}^* \\ (\mathbf{b}^*)^T & a_{nn} \end{pmatrix}$$

for some

$$R^* \in \mathcal{M}_{n-1}(\mathbb{Z}; H), \quad \mathbf{a}^*, \mathbf{b}^* \in \mathbb{Z}^{n-1}, \quad a_{nn} \in \mathbb{Z},$$

with

$$|\mathbf{a}^*|, |\mathbf{b}^*| \le H$$
 and $|a_{nn}| \le H$.

Reduction

Recall

$$A = \begin{pmatrix} R^* & \mathbf{a}^* \\ (\mathbf{b}^*)^T & a_{nn} \end{pmatrix} \in \mathcal{S}_n(H; d, t), \quad \det A = d, \quad \operatorname{Tr}(A) = t.$$

- We first count matrices $\in \mathcal{S}_n(H;d,t)$ with $\mathbf{a}^*=0$ or $\mathbf{b}^*=\mathbf{0}$, $\Longrightarrow H^{n^2-n-1+o(1)}$ matrices.
- Next, we count matrices $R^* \in \mathcal{M}_{n-1}(\mathbb{Z}; H)$ for which there are unique \mathbf{a}^* , \mathbf{b}^* with $A \in \mathcal{S}_n(H; d, t) \Longrightarrow H^{(n-1)^2} \leq H^{n^2-n-1+o(1)}$ matrices.
- Hence, it remains to count triples $(R^*, \mathbf{a}^*, \mathbf{b}^*)$ with $A \in \mathcal{S}_n(H; d, t)$ such that $R^* \in \mathcal{M}_{n-1}(\mathbb{Z}; H)$ appears for at least two distinct triples $(R^*, \mathbf{a}_1^*, \mathbf{b}_1^*)$ and $(R^*, \mathbf{a}_2^*, \mathbf{b}_2^*)$.

Algebraic manipulations reduce this to bounding $\#\mathcal{U}_n(2H)$, where

$$\mathcal{U}_n(K) = \{ A \in \mathcal{M}_n(\mathbb{Z}; K) : \det A = 0, \ \mathbf{a}^*, \mathbf{b}^* \neq \mathbf{0}, \ a_{nn} = 0 \}.$$

Adapting Katznelson's idea

- Since $\det A = 0$, there is non-zero vector $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{Z}^n$ such that $A\lambda = 0$. Since $\mathbf{a}^*, \mathbf{b}^* \neq \mathbf{0}$ we have $\lambda \neq (0, \dots, 0, 1)$.
- *Katznelson* (1993) has refined this as following: there is a primitive (i.e. with $gcd(\lambda_1, ..., \lambda_n) = 1$) vector $\lambda \in \mathbb{Z}^n$ such that

$$A\lambda = \mathbf{0}$$
 and $|\lambda| \ll H^{n-1}$,

and such that the lattice

$$\mathcal{L}_{\lambda} = \{ \mathbf{u} = (u_1, \dots, u_n) \in \mathbb{Z}^n : u_1 \lambda_1 + \dots + u_n \lambda_n = 0 \}$$

has a basis of size O(H), i.e., an almost *orthogonal* basis.

- ullet We call such primitive $oldsymbol{\lambda} \in \mathbb{Z}^n$ for which \mathcal{L}_{λ} has a short basis H-good.
- Next, we split $\#\mathcal{U}_n(H)$ into contributions $U_n(H; \lambda)$ from each primitive H-good vector λ :

$$\#\mathcal{U}_n(H) \le \sum_{|\boldsymbol{\lambda}| < c_0 H^{n-1}}^{\sharp} U_n(H; \boldsymbol{\lambda}),$$

where Σ^{\sharp} means that the sum runs over primitive H-good $\lambda \neq (0, \dots, 0, 1)$, and $U_n(H; \lambda) = \#\{A \in \mathcal{U}_n(H) : A\lambda = 0\}$.

• The top n-1 rows of A come from the lattice

$$\mathcal{L}_{\lambda} = \{ \mathbf{u} = (u_1, \dots, u_n) \in \mathbb{Z}^n : u_1 \lambda_1 + \dots + u_n \lambda_n = 0 \}.$$

The bottom row belongs to the lattice

$$\mathcal{L}_{\lambda}^* = \{ \mathbf{v} = (v_1, \dots, v_{n-1}) \in \mathbb{Z}^n : v_1 \lambda_1 + \dots + v_{n-1} \lambda_{n-1} = 0 \}.$$

- To count the number of possibilities for the top n-1 rows, as in *Katznelson* (1993), we use a result of *Schmidt* (1968) on counting integer lattice points in a box.
- For the bottom row, unfortunately, we control neither *primitivemeness* nor H-goodness of $(\lambda_1, \ldots, \lambda_{n-1})$, so now our argument deviates from that of Katznelson (1993).

We need to count lattice points in "bad" (="skewed") lattices $\mathcal{L}_{\lambda}^{*}$. To do this, we introduce a measure of quality of λ and count the number of λ with this parameter in a dyadic interval. This is the most involved part of the argument.

Question

Can we get a better bound if we also fix TrA^2 (besides $\det A$ and TrA)?

Coming back to multiplicative dependence

Recall our sets:

$$\mathcal{N}_{n,s}(H) = \{(A_1, \dots, A_s) \in \mathcal{M}_n \left(\mathbb{Z}; H\right)^s :$$

$$(A_1, \dots, A_s) \text{ is mult. dep.}\};$$

$$\mathcal{N}_{n,s}^*(H) = \{(A_1, \dots, A_s) \in \mathcal{N}_{n,s}(H) :$$

$$(A_1, \dots, A_s) \text{ is mult. dep. of maximal rank}\}.$$

Counting multiplicatively dependent matrices of maximal rank

A.O. & Shparlinski (2022)

We have

$$\begin{split} H^{sn^2 - \lceil s/2 \rceil n + o(1)} &\geq \# \mathcal{N}_{n,s}^*(H) \\ &\geq \begin{cases} H^{(s-1)n^2/2 + n/2 + o(1)}, & \text{if s is even}, \\ H^{(s-1)n^2/2 + o(1)}, & \text{if s is odd}. \end{cases} \end{split}$$

Idea of proof: Upper bound

• Let $(A_1, \ldots, A_s) \in \mathcal{M}_n (\mathbb{Z}; H)^s$ be such that

$$A_1^{k_1}\ldots A_s^{k_s}=I$$
 for some $k_1,\ldots,k_s\in\mathbb{Z}\setminus\{0\}$ (max. rank!)

$$\prod_{i \in \mathcal{I}} (\det A_i)^{|k_i|} = \prod_{j \in \mathcal{J}} (\det A_j)^{|k_j|}, \qquad (\star)$$

with $\mathcal{I}\cup\mathcal{J}=\{1,\ldots,s\}$, $\mathcal{I}\cap\mathcal{J}=\emptyset$ and $|k_h|>0$, $h=1,\ldots,s$.

- Fix $\mathcal I$ and $\mathcal J$ as above and count s-tuples for which (\star) is possible with these sets $\mathcal I$ and $\mathcal J$ and some exponents $|k_h|>0,\ h=1,\ldots,s.$ Let $I=\#\mathcal I$ and $J=\#\mathcal J$.
- Assume $J \leq I$ (and thus $I \geq \lceil s/2 \rceil$) and fix J matrices $A_j, \ j \in \mathcal{J}$, trivially in at most

$$\mathfrak{A}_1 = O\left(H^{Jn^2}\right)$$

ways.

Let

$$Q = \prod_{j \in \mathcal{J}} \det A_j.$$

• $\det A_i$, $i \in \mathcal{I}$, are factored from the prime divisors of Q and thus one can show that each of them can take at most $H^{o(1)}$ values.

Shparlinski (2010): each of the matrices A_i can take at most $H^{n^2-n+o(1)}$ values. Hence the total number of choices for the I-tuple $(A_i)_{i\in\mathcal{I}}$ is at most

$$\mathfrak{A}_2 = H^{In^2 - In + o(1)}.$$

Total number of s-tuples $(A_1, \ldots, A_s) \in \mathcal{M}_n(\mathbb{Z}; H)^s$ satisfying (\star) for at least one choice of the exponents is at most

$$\mathfrak{A}_1 \mathfrak{A}_2 = H^{Jn^2 + In^2 - In + o(1)} = H^{sn^2 - \lceil s/2 \rceil n + o(1)}.$$

Lower bound

Assume s=2r (similar construction also works for s=2r+1).

- One can show *inductively* that there are $K^{sn^2+o(1)}$ choices for s-tuples $(B_1, \ldots, B_s) \in \mathcal{M}_n\left(\mathbb{Z};K\right)^s$ of non-singular matrices such that for every $j=2,\ldots,s$, $\det B_j$ contains a prime divisor which does not divide $\det B_1 \ldots \det B_{j-1}$.
- Let $K = \lfloor (H/n)^{1/2} \rfloor$. For any choice of $(B_1, \ldots, B_s) \in \mathcal{M}_n(\mathbb{Z}; K)^s$ as above, we define

$$A_{2i-1} = B_{2i-1}B_{2i}, \qquad A_{2i} = B_{2i+1}B_{2i}, \qquad i = 1, \dots, r,$$

where we also set $B_{2r+1} = B_{s+1} = B_1$. Clearly

$$A_1 A_2^{-1} \dots A_{2r-1} A_{2r}^{-1} = I.$$

$$(A_1,\ldots,A_s)\in\mathcal{N}_{n,s}^*(H).$$

• In principle different choices (B_1, \ldots, B_s) can lead to the same (A_1, \ldots, A_s) in the above construction.

We need to eliminate possible repetitions.

- When (A_1, \ldots, A_s) and B_1 are fixed then the other matrices B_2, \ldots, B_s are uniquely defined.
- Hence each s-tuple (A_1, \ldots, A_s) comes from at most $K^{n^2-n+o(1)}$ different choices of $(B_1, \ldots, B_s) \in \mathcal{M}_n(\mathbb{Z}; K)^s$

$$\#\mathcal{N}_{n,s}^*(H) \ge K^{sn^2-n^2+n+o(1)} = H^{n((s-1)n+1)/2+o(1)}$$

for an even s.

Background on totients

Recall that m is called a *totient* if it is a value of the Euler function $m=\varphi(k)$ for some integer k.

Since $1 = \varphi(1)$ is a totient, each integer can be represented as a sum of some number $h \ge 1$ of totients and hence we can define

$$w(n) = \max \left\{ \sum_{j=1}^{h} \varphi(k_j)^2 : n = \sum_{j=1}^{h} \varphi(k_j) \right\},$$

where the maximum is taken over all such representations of all possible lengths $h \geq 1$.

In particular, by Baker, Harman & Pintz (2001) on prime gaps:

$$n^2 \ge w(n) \ge \left(n - n^{21/40}\right)^2 \ge n^2 - 2n^{61/40}$$

for a sufficiently large n.

Counting multiplicatively dependent matrices

Recall that $R_n(H;f)$ is the number of matrices $A \in \mathcal{M}_n(\mathbb{Z};H)$ with a given characteristic polynomial $f \in \mathbb{Z}[X]$ and γ_n is the largest real number such that uniformly over polynomials f we have

$$R_n(H;f) \le H^{n^2-n-\gamma_n+o(1)}, \quad \text{as } H \to \infty.$$

A.O. & Shparlinski (2022)

With γ_n as above, we have

$$H^{sn^2-n-\min\{n,\gamma_n\}+o(1)} \ge \#\mathcal{N}_{n,s}(H) \ge H^{(s-1)n^2+w(n)/2-n/2}$$

Upper bound

If any multiplicative relation between $(A_1,\ldots,A_s)\in\mathcal{M}_n\left(\mathbb{Z};H\right)^s$ involves at least $r\geq 3$ matrices, we use our bound on $\mathcal{N}_{n,r}^*(H)\leq H^{rn^2-2n+o(1)}$. The total contribution from such s-tuples is

$$H^{rn^2-2n+o(1)}H^{(s-r)n^2} = H^{sn^2-2n+o(1)}.$$

For s-tuples $(A_1, \ldots, A_s) \in \mathcal{M}_n(\mathbb{Z})^s$ with a multiplicative relation between two matrices, call them A and B, we get an equation of the type

$$A^k = B^m$$
, for some $(k, m) \in \mathbb{Z}^2 \setminus \{(0, 0)\}$.

Despite that k and m are not fixed, one can show that there are $H^{o(1)}$ possibilities for Spectrum A when Spectrum B is fixed.

This allows us to invoke our bound on $R_n(H; f) \leq H^{n^2 - n - \gamma_n + o(1)}$. The total contribution from such s-tuples is

$$H^{n^2}H^{n^2-n-\gamma_n+o(1)}H^{(s-2)n^2} = H^{sn^2-n-\gamma_n+o(1)}.$$

Construction for the lower bound (simplified)

Let $\Phi_k(X)$ be the kth cyclotomic polynomial, of degree $\varphi(k)=m\leq n$. Since Φ_k is monic & irreducible by Eskin, Mozes & Shah (1996) there are

$$R_m(H;\Phi_k)\gg H^{m(m-1)/2}$$

matrices $B \in \mathcal{M}_m(\mathbb{Z}; H)$ for which $\Phi_k(B) = 0$: $\Longrightarrow B^k = I$. Then

$$A = \begin{pmatrix} I_{n-m} & \mathbf{0} \\ \mathbf{0} & B \end{pmatrix} \Longrightarrow A^k = I_n.$$

Choosing A_1 as one of such matrices and arbitrary A_2, \ldots, A_s , we obtain

$$\#\mathcal{N}_{n,s}(H) \gg H^{(s-1)n^2} R_m(H; \Phi_k).$$

Remark: We can do better by putting more "roots of identity" of orders k_1, \ldots, k_h along the main diagonal:

$$A = \begin{pmatrix} B_1 & \mathbf{0} \\ \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & B_h \end{pmatrix} \Longrightarrow A^{k_1 \dots k_h} = I_n.$$

Counting free tuples

Recall:

$$\mathcal{K}_{n,s}(H) = \{(A_1, \dots, A_s) \in \mathcal{M}_n\left(\mathbb{Z}; H\right)^s : (A_1, \dots, A_s) \text{ is non-free}$$

and satisfies (\star)

 $(\star):$ If $A_{i_1}^{\pm 1}\cdots A_{i_L}^{\pm 1}=I, \quad i_1,\ldots,i_L\in\{1,\ldots,s\},$ then for at least one $i=1,\ldots,s$ the ± 1 exponents of A_i do not sum up to zero.

Note that $\#\mathcal{K}_{n,s}(H) \ge \#\mathcal{N}_{n,s}(H)$, and thus we only need an upper bound.

A.O. & Shparlinski (2022)

We have

$$\#\mathcal{K}_{n,s}(H) < H^{sn^2 - n + o(1)}$$
.

Boundedly generated subgroups

A group $\Gamma \leq \operatorname{GL}_n(\mathbb{Q})$ is boundedly generated if $\exists A_1, \ldots, A_s \in \operatorname{GL}_n(\mathbb{Q})$:

$$\Gamma = \{A_1^{k_1} \dots A_s^{k_s} : k_1, \dots, k_s \in \mathbb{Z}\} = \langle A_1 \rangle \dots \langle A_s \rangle.$$

Inspired by recent work of *Corvaja, Demeio, Rapinchuk, Ren & Zannier* (2022) on sparsity of elements of boundedly generated subgroups of $\mathrm{GL}_n(\mathbb{Q})$ we look at a dual question and count elements of the set:

$$\mathcal{G}_{n,s}(H) = \{(A_1, \dots, A_s) \in \mathcal{M}_n(\mathbb{Z}; H) : \langle A_1 \rangle \dots \langle A_s \rangle \leq \operatorname{GL}_n(\mathbb{Q}) \}.$$

Remark: The fact that $I_n \in \Gamma$ does not allow us to use our bounds on $\#\mathcal{N}_{n,s}(H)$ since now the choice $k_1 = \ldots = k_s = 0$ is not excluded.

A.O. & Shparlinski (2022)

For n > 2, we have

$$\#\mathcal{G}_{n,s}(H) < H^{sn^2 - sn/3 + o(1)}$$
.

Commuting matrices

As a part of the argument, we need to count, for a given matrix A, the number of matrices $B \in \mathcal{M}_n(\mathbb{Z};H)$ which belong to the *centraliser* of A, that is, bound the cardinality of the set

$$C_n(A, H) = \{ B \in \mathcal{M}_n(\mathbb{Z}; H) : AB = BA \}.$$

A.O. & Shparlinski (2022)

Assume that A has either a row or a column with two non-zero elements. Then

$$\#\mathcal{C}_n(A,H) \ll H^{n^2-n}$$
.

This also motivates a dual question of estimating the cardinality of the set

$$C_n(H) = \{(A, B) \in \mathcal{M}_n (\mathbb{Z}; H)^2 : AB = BA\}.$$

Using Feit and Fine (1960) on counting commuting matrices over \mathbb{F}_q , applied with a prime q=p satsifying $2H , implies that <math>\#\mathcal{C}_n(H) \ll H^{n^2+n}$, but we seek better bounds.

More questions

Of course, we want to see our bounds improved but here we formulate several other possible directions of research.

Multiplicatively dependent $\mathrm{SL}_n(\mathbb{Z})$ matrices

Our methods always exploit multiplicative relations between determinants. Thus we have *no nontrivial bounds* for $SL_n(\mathbb{Z})$ matrices (even for n=2).

Multiplicatively dependent symmetric matrices

Shparlinski (2010): nontrivial upper bound for the number of symmetric matrices $A \in \mathcal{M}_n\left(\mathbb{Z};H\right)$ of given determinant but it is rather weak and is not expected to be tight. Getting a good bound on

$$\#\{A \in \mathcal{M}_n(\mathbb{Z}; H): A = A^t, \det A = d\}$$

can be the first step towards extending our results to symmetric matrices and is of independent interest.

Commutators

A matrix $C \in \mathcal{M}_n(\mathbb{Z})$ is called a *commutator* if $C = ABA^{-1}B^{-1}$ for some $A, B \in \mathcal{M}_n(\mathbb{Z})$.

Can we get a nontrivial bound on the number of commutators in $\mathcal{M}_n(\mathbb{Z};H)$?

Clearly if $C = ABA^{-1}B^{-1}$, then $\det C = 1$, and thus by *Duke, Rudnick & Sarnak* (1993) we have at most H^{n^2-n} such matrices, which we call to be the *trivial* bound.