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Generalized Laguerre Polynomial

Definition

Let α and n be integers with n≥ 1. The Generalized Laguerre Polynomial of

degree n with parameter α is denoted by L(α)
n (x). It is defined by

L(α)
n (x) =

n

∑
j=0

(−1)n− j (n+α)(n−1+α) · · ·( j+1+α)

(n− j)! j!
x j.

• The leading coefficient of L(α)
n (x) is 1

n! .

In what follows, a polynomial f (x) ∈Q[x] will be called irreducible, if it is
irreducible over Q.
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Special types of Laguerre polynomials

• For α = 0, L(0)
n (x) has a simpler form given by

L(0)
n (x) =

n

∑
j=0

(−1)n− j n(n−1) · · ·( j+1)
(n− j)! j!

x j =
n

∑
j=0

(−1)n− j

j!

(
n
j

)
x j.

L(0)
n (x) is called the classical Laguerre polynomial of degree n.

• For α =−n−1, L(−n−1)
n (x) also has a simple form given by

L(−n−1)
n (x) =

n

∑
j=0

(−1)n− j (−1)(−2) · · ·(−n+ j)
(n− j)! j!

x j

=
n

∑
j=0

x j

j!
.

So L(−n−1)
n (x) is the nth Taylor polynomial of the exponential function.
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Well known results of I. Schur

Theorem (I. Schur, 1930)

L(−n−1)
n (x) is irreducible for each n≥ 1. The Galois group of L(−n−1)

n (x) is the
alternating group An of degree n if n≡ 0 (mod 4), and it is the symmetric group
Sn of degree n if n 6≡ 0 (mod 4).

Theorem (I. Schur, 1930)

L(0)
n (x) is irreducible for each n≥ 1. The Galois group of L(0)

n (x) is Sn for each n.

Theorem (I. Schur, 1930)

L(1)
n (x) is irreducible for each n≥ 1. The Galois group of L(1)

n (x) is An if n is odd
or n+1 is an odd square and Sn otherwise.
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Bessel polynomials

The Bessel polynomial of degree n is defined by

yn(x) =
n

∑
j=0

(n+ j)!
(n− j)! j!

( x
2

) j
.

It can be easily checked that

xnyn

(
2
x

)
= n!L(−2n−1)

n (x) =
n

∑
j=0

(2n− j)!
(n− j)! j!

x j.

The irreducibility for nth degree Bessel polynomial for each n≥ 1 was proved
by M. Filaseta and O. Trifonov in 2002.
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Irreducibility of L(α)
n (x) over Q

• Let n≥ 2 be an integer. For α =−a where 1≤ a < n, it can be easily seen that

L(−a)
n (x) =

n

∑
j=0

(−1)n− j (n−a)(n−1−a) · · ·( j+1−a)
(n− j)! j!

x j

= xaL(a)
n−a(x).

Hence L(α)
n (x) is reducible for α =−a where 1≤ a < n.

• One can also check that

L(2)
2 (x) =

1
2
(x−2)(x−6),

L(23)
2 (x) =

1
2
(x−20)(x−30),

L(23)
4 (x) =

1
24

(x−30)(x3−78x2 +1872x−14040).
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Irreducibility of L(α)
n (x) over Q

It is known that L(α)
n (x) is irreducible for the following values of α.

I. Schur (1930), R. F. Coleman (1987) : α =−n−1

F. Hajir (1995) : α =−n−2

M. Filaseta, O. Trifonov (2002) : α =−2n−1

E. A. Sell (2004) : α =−n−3

F. Hajir (2009) : α =−n−1− r for r ∈ [3,8]

M. Filaseta, T. Kidd, O. Trifonov (2012) : α = n with n≡ 2 (mod 4)

S. Nair, T. N. Shorey (2015) : α =−n−1− r for r ∈ [9,22]

α =−n−1− r for r ∈ [23,92]
α =−2n−β for β ∈ [0,4]
α = n+ γ for γ ∈ [−6,3]
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α =−n−1− r for 23≤ r ≤ 92

Theorem 1. (A. Jindal, S. Laishram, R. Sarma), 2018

For integers n≥ 1 and 23≤ r ≤ 60, L(−n−1−r)
n (x) is irreducible.

Theorem. (T. N. Shorey, S. B. Sinha), 2022

For integers n≥ 3 and r ≤ 92, L(−n−1−r)
n (x) is either irreducible or L(−n−1−r)

n (x) is
a product of a linear polynomial with an irreducible polynomial of degree n−1.

Theorem 2. (A. Jindal, S. Nair, T. N. Shorey), 2023

For integers n≥ 1 and 61≤ r ≤ 92, L(−n−1−r)
n (x) is irreducible.
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For integers n≥ 1 and 61≤ r ≤ 92, L(−n−1−r)
n (x) is irreducible.
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α =−2n−β for 0≤ β ≤ 4

Theorem 3. (A. Jindal, S. Laishram), 2022

Let n > 1 be an integer.

(i) For an integer β ∈ [1,4], L(−2n−β )
n (x) is irreducible.

(ii) L(−2n)
n (x) is either irreducible or L(−2n)

n (x) is a product of a linear polynomial
with an irreducible polynomial of degree n−1. Further if

2`||n with `≤ n1/2,

then
L(−2n)

n (x) is irreducible.

In particular, L(−2n)
n (x) is irreducible for odd n.

(iii) L(−2n)
n (x) is irreducible if n is a power of 2.
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α = n+ γ for −6≤ γ ≤ 3

Theorem 4. (A. Jindal, S.Laishram), 2023

Let n > 1 be an integer.

(i) For γ ∈ {−2,−1,2,3}, L(n+γ)
n (x) is irreducible.

(ii) For γ = 1, L(n+1)
n (x) is irreducible for n 6= 4. In fact,

L(5)
4 (x) =

1
5!
(x+6)(x3 +30x2 +252x+504).

(iii) For an integer γ ∈ [−6,−3] and n /∈
[
|γ|
2 , |γ|−1

]
, L(n+γ)

n (x) is irreducible.

(iv) L(n)
n (x) is either irreducible or is a product of a linear polynomial and an

irreducible polynomial of degree n−1. Further, if

2`||n with `≤ n1/2,

then L(n)
n (x) is irreducible. In particular, L(n)

n (x) is irreducible for odd n. Also

L(n)
n (x) is irreducible, if n is a power of 2.
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p-Newton polygon

For a prime p and a non-zero integer a, vp(a) will stand for the highest power of p
dividing a. We set vp(0) = ∞.

Let p be a prime number.

Let f (x) = anxn +an−1xn−1 + · · ·+a1x+a0 ∈ Z[x] with a0an 6= 0.

Let Pi stand for the point in the plane having the coordinates (i,vp(an−i))
when ai 6= 0, 0≤ i≤ n. We consider the set

S = {(i,vp(an−i)) | 0≤ i≤ n, an−i 6= 0}.

Let µi j denote the slope of the line joining Pi and Pj if aia j 6= 0.
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Let i1 be the largest index 0 < i1 ≤ n such that

µ0i1 = min{µ0 j | 0 < j ≤ n, an− j 6= 0}.

If i1 < n, let i2 be the largest index i1 < i2 ≤ n such that

µi1i2 = min{µi1 j | i1 < j ≤ n, an− j 6= 0}.

and so on.

The p-Newton polygon of f (x) is the polygonal path having segments
P0Pi1 ,Pi1Pi2 , . . . ,Pik−1Pik with ik = n.

These segments are called the edges of the p-Newton polygon of f (x) and
their slopes form a strictly increasing sequence.
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If each ai 6= 0,

f (x) = anxn + an−1xn−1 + an−2xn−2 + · · · +aixi + · · · +a0

↓ ↓ ↓ ↓ ↓
S ={(0,vp(an)),(1,vp(an−1)), (2,vp(an−2)), . . . ,(i,vp(an−i)), . . . ,(n,vp(a0))}

q q q q q
P0 P1 P2 Pi Pn

(0,vp(an))

(n,vp(a0))

(0,0) (n,0)
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Example

Let p = 3. Consider the polynomial f (x) = x3 +3x2 +12x+9.

f (x) = x3 + 3x2 +12x + 9
↓ ↓ ↓ ↓

S ={(0,0), (1,1), (2,1), (3,2)}

1 2 3 4 5

1

2

3

(0,0)

(1,1)
(2,1)

(3,2)

3-Newton Polygon of f (x) = x3 +3x2 +12x+9
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p-Newton polygon of Eisenstein polynomial

Definition.
Let p be a prime. Let

f (x) = anxn +an−1xn−1 + · · ·+a0 ∈ Z[x]

such that p - an, p|ai for 0≤ i≤ n−1, p2 - a0. Such a polynomial is said to be an
Eisenstein polynomial with respect to p.
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p-Newton polygon of Eisenstein polynomial

Definition.
Let p be a prime. Let

f (x) = anxn +an−1xn−1 + · · ·+a0 ∈ Z[x]

such that p - an, p|ai for 0≤ i≤ n−1, p2 - a0. Such a polynomial is said to be an
Eisenstein polynomial with respect to p.

• Then p-Newton polygon of f (x) consists of only one edge which has slope 1
n .

p-Newton Polygon of f (x)Ankita Jindal (ISI Bangalore Centre) April 28, 2023 20 / 37



p-Newton polygon of Eisenstein polynomial

Restatement of Eisenstein Irreducibility Criterion:

Let f (x) = anxn +an−1xn−1 + · · ·+a0 ∈ Z[x].
Assume that the p-Newton polygon of f (x) for some prime p has only one
edge with vertices {(0,0),(n,1)}.
Then f (x) is irreducible over Q.
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Example

Let p = 3.

3-Newton polygons of f (x) = x3 +3x2 +12x+9 and g(x) = 2x2 +9x+3

3-Newton polygon of f (x)g(x) = 2x5 +15x4 +54x3 +135x2 +117x+27
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Dumas’ result on the p-Newton polygon of product of
polynomials

Theorem. (G. Dumas), 1906

Let g(x),h(x) ∈ Z[x] with g(0)h(0) 6= 0, and let p be a prime. Let pt ≥ 1 be the
highest power of p dividing the leading coefficient of g(x)h(x). Then the
p-Newton polygon of g(x)h(x) can be formed by constructing a polygonal path
beginning at (0, t) and using translates of the edges in the p-Newton polygons of
g(x) and h(x) in the increasing order of slopes.

Note that Eisenstein Irreducibility Criterion follows immediately from the above
theorem. Because for polynomial f (x) of degree n which is Eisenstein with respect
to p, the p-Newton polygon of f (x) consists of a single edge without any point
with integer entries other than (0,0) and (n,1).
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Filaseta’s Criterion

• If a polynomial f (x) of degree n is reducible, then f (x) necessarily has a factor
of degree k ∈ [1, n

2 ].

Theorem (M. Filaseta), 1995

Let n be a positive integer and p be a prime. Let k and ` be integers with
0≤ ` < k ≤ n

2 . Let f (x) = anxn + · · ·+a1x+a0 ∈ Z[x] be a polynomial of degree n
with non-zeo constant term. Suppose that

(i) p - an,

(ii) p | a j for all j ∈ {0,1, . . . ,n− `−1}, and

(iii) the right-most edge of the p-Newton polygon of f (x) has slope < 1
k .

Then f (x) does not have a factor over Q with degree in the interval [`+1,k].

Note that Eisenstein’s irreducibility criterion follows from Filaseta’s result by
taking `= 0 and k = n

2 .
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Another application of p-Newton polygons

Theorem 5. (A. Jindal, S. Laishram), 2023

Let n be a positive integer and let p be a prime. Let k, ` and `
′

be integers with
0≤ `

′ ≤ ` < k ≤ n
2 . Let f (x) = anxn + · · ·+a1x+a0 ∈ Z[x] be a polynomial of

degree n with non-zero constant term. Suppose that

(i) p - an

(ii) p|a j for all j ∈ {0,1, . . . ,n− (`− `
′
)−1},

(iii) vp(a`+1)> vp(a0) and

vp(a`) = vp(a`−1) = · · ·= vp(a`′ )

< vp(a`′−1) = vp(a`′−2) = · · ·= vp(a1) = vp(a0),

(iv) max
`+1< j6n

vp(a0)−vp(a j)
j < 1

k .

Then the polynomial f (x) does not have a factor over Q with degree in the
interval [`+1,k].
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Results on the greatest prime factor of a product of consecutive positive integers

Definition

For an integer m > 1, let P(m) denotes the greatest prime factor of m. We take
P(1) = 1.

Theorem. (S. Nair, T. N. Shorey), 2016

Let k ≥ 2 and n≥ 5k be integers. Then

P(n(n−1) · · ·(n− k+1))> 4.42k

except for

(n,k) ∈ {(10,2),(15,2),(16,2),(21,2),(25,2),(28,2),(36,2),(49,2),(50,2),

(64,2),(81,2),(126,2),(225,2),(2401,2),(4375,2),(15,3),(16,3),

(22,3),(26,3),(27,3),(28,3),(50,3),(56,3),(65,3),(66,3),(100,3),

(352,3),(27,4),(28,4),(35,4),(36,4),(51,4),(52,4),(66,4),(28,5),

(36,5),(52,5),(35,7),(36,7)}.
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Some observations from Lehmer’s Table

In 1964, D. H. Lehmer gave the tables, namely Table IA, Table IIA and Table IIIA,
along with many other tables where

Table IA consists of all the integers x > 1 such that P(x(x−1))6 41.

Table IIA consists of all the odd integers x > 1 such that P(x(x−2))6 31.

Table IIIA consists of all the odd integers x > 3 such that P(x(x−4))6 31.

Using these table, we have

• P(x(x−1))>


7 if x > 81,
11 if x > 64 and x /∈ {81,126,225,2401,4375},
43 if x > 6.4×1010.

• P(x(x−2))> 37 if x > 287080367 and x is odd.

• P(x(x−4))> 37 if x > 10439037 and x is odd.
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Luca and Najman’s Table

Theorem. (F. Luca, F. Najman) 2011

For 2 6 k 6 9 and n > nk, we have P(n(n−1) · · ·(n− k+1))> 101 where nk are
given by

k 2 3 4 5 6 7 8 9
nk 9591468737351909376 407498960 97527 7569 7569 4902 4902 292

n = 292 is the largest positive integer n satisfying

P(n(n−1) · · ·(n−8))< 101.
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Inverse Galois Problem

The following problem was posed in the early 19th century:

Given a finite group G, whether there exists a Galois extension of Q whose Galois
group is G? This is called the Inverse Problem of Galois Theory and is one of the
most challenging problems in mathematics. It is still open in general.

The first systematic approach to a solution of the inverse Galois problem goes
back to Hilbert (1892) who proved that there exists an irreducible polynomial of
degree n over Q whose Galois group is Sn.

Since every finite group is isomorphic to a subgroup of Sn, in view of fundamental
theorem of Galois Theory it follows that every finite group G is the Galois group
of a Galois extension of algebraic number fields.
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Galois group of L(α)
n (x) over Q

Theorem 6. (A. Jindal, S. Laishram, R. Sarma), 2018

For integers n≥ 1 and 23≤ r ≤ 60, the Galois group of L(−n−1−r)
n (x) is Sn unless

(n,r) ∈{(4,24),(5,28),(24,25),(25,24),(28,23),(28,29),(32,33),(33,36),

(36,37),(40,41),(44,45),(48,49),(48,51),(49,48),(49,50),(52,53),

(56,57)},

in which case its Galois group is An.

Theorem 7. (A. Jindal, S. Nair, T. N. Shorey), 2023

For integers n≥ 1 and 61≤ r ≤ 92, the Galois group of L(−n−1−r)
n (x) is Sn unless

(n,r) ∈{(60,61),(61,64),(64,65),(68,69),(72,73),(76,77),(80,81),

(81,80),(84,85),(88,89),(92,93),(96,97),(97,98),(97,100)},

in which case its Galois group is An.
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Galois group of L(α)
n (x) over Q

• The rational part of an element δ = a+b
√

2 ∈Q(
√

2) with a,b ∈Q is defined
to be a.

Theorem 8. (A. Jindal, S. Laishram), 2022

Let n≥ 1 be an integer and β ∈ {0,2,4}. The associated Galois group of

L(−2n−β )
n (x) is An if and only if one of the following conditions is satisfied:

(i) β = 0 and n is square of an odd integer;

(ii) β = 2 and n≡ 0 (mod 4) or (n+1)/2 is square of an odd integer;

(iii) β = 4 and n+3 is square of an even integer or (n+1)/2 is square of the
rational part of (1+

√
2)2t+1 for some positive integer t.
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Galois group of L(α)
n (x) over Q

Theorem 9. (A. Jindal, S. Laishram), 2023

Let n≥ 1 be an integer and γ ∈ {−6,−1,0,1,2,3} be such that when γ = 0, then
the highest power of 2 dividing n does not exceed n1/2. The associated Galois

group of L(n+γ)
n (x) is An if and only if one of the following conditions is satisfied:

(i) γ =−6 and (2n−5)/3 is the rational part of (1+
√

2)4t for some positive
integer t;

(ii) γ =−1 and n is square of an odd integer;

(iii) γ = 0 and n≡ 0 (mod 2);
(iv) γ = 1 and n+1 is twice a square;

(v) γ = 2 and n+1 is the square of the rational part of (1+
√

2)2t+1 for some
positive integer t;

(vi) γ = 3 and n is square of an even integer.
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