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Torsion and rank of elliptic curves over Q
Let £ be an elliptic curve over Q.

By the Mordell-Weil theorem, the group E(Q) of ratio-
nals points on E is a finitely generated abelian group.
Hence, it is the product of the torsion group and » > 0
copies of the infinite cyclic group:

E(Q) = E(Q)tors X Z'.



By Mazur's theorem, we know that E(Q)tors iS One of
the following 15 groups:

Z/nZ with 1 <n <10 or n =12,
7.)27 x 7.)2mZ with 1 < m < 4.

It is not known which values of rank r are possible for
elliptic curves over Q. It has been conjectured that
there exist elliptic curves of arbitrarily high rank, and
even for each of the torsion groups in Mazur’s theorem.

However there are also recent heuristic arguments that
suggest the boundedness of the rank of elliptic curves.
According to this heuristic, only a finite number of
curves would have rank higher that 21.

The current record is an example of elliptic curve over
Q with rank > 28, found by Elkies in 2006.



B(T) = sup{rank (E(Q)) : torsion group of E over Q is T}.

Montgomery (1987): Proposed the use of elliptic curves
with large torsion group and positive rank in factoriza-
tion.

It follows from results of Montgomery, Suyama, Atkin
& Morain (Finding suitable curves for the elliptic curve

method of factorization, 1993), that B(T) > 1 for all
torsion groups T'.

Womack (2000): B(T) > 2 for all T

D. (2003): B(T) >3 for all T



Elliptic curves over quadratic fields

Kenku & Momose (1988), Kamienny (1992):

Let E be an elliptic curve over a quadratic field E(K).
The torsion group of E(K) is isomorphic to one of the
following groups:

Z/nZ, where n =1,2,3,...16 or 18;

7./27 x 7./2nZ, where n =1,2,3,4,5,6;

7./37 x Z./3nZ, where n =1 or 2 (only if K = Q(+/-=3));
Z7./]47 x Z./AZ (only if K= Q(7)).

Note that if torsion group over a number field K con-
tains Z/mZ x Z/mZ, then the m-th roots of unity lie
in K.



Bosman, Bruin, D., Najman (2014):

T here exist elliptic curves over quadratic fields with pos-
itive rank and torsion Z/15Z (rank > 1 over Q(1/345),
7./187Z (rank > 2 over Q(v/26521), Z/27Z x Z/10Z (rank
> 4 over Q(v/55325286553) and Z/27 x 7Z/127Z (rank
> 4 over Q(+/2947271015)).

Together with Rabarison (2010), this implies that there
exist curves with positive rank for all 26 possible torsion
groups over quadratic fields.

All elliptic curves over quadratic fields with torsions
Z/137Z or 7Z/187Z have even rank (false complex mul-

tiplication).

Similar results for cubic and quartic fields.



Aguirre, D., JukiC Bokun, Peral (2014), Najman
(2014), Voznyy (2022):
For each of 26 possible torsion groups there exist an
elliptic curve over some quadratic field with this torsion
group and with rank > 2.

In the case of the 15 possible torsion groups of elliptic
curves over Q (and other torsion groups which admit
a model with rational coefficients), we consider curves
with rational coefficients, and in order to determine
their rank over a quadratic field Q(+v/d) we use the for-
mula

rank(E(Q(Vd)) = rank(E(Q)) + rank(EW(Q)), (1)

where E( denotes the d-quadratic twist of E.



Applications of elliptic curves in factorization

Finding elliptic curves with positive rank and large tor-
sion over number fields is not just a curiosity. Elliptic
curves with large torsion and positive rank over the ra-
tionals have long been used for factorization, starting
with Montgomery, Atkin and Morain.

Also examining the torsion of an elliptic curve over num-
ber fields of small degree has some additional benefits
(Brier & Clavier (2010), D. & Najman (2012), Bosman,
Bruin, D. & Najman (2014), Morain (2022, ANTS)).



It is well-known that elliptic curves have applications
in public-key cryptography and also in factorization of
large integers and primality proving. The main idea is
to replace the group ]F; with (fixed) order p — 1, by a
group E(Fy,) with more flexible order. Namely, by Hasse
theorem we have

p+1-2/p<|EE)| <p+1+2p

Pollard’s p — 1 factorization method (1974):

Let n be a composite integer with unknown prime factor
p. For any multiple m of p—1 we have ¢ =1 (mod p),
and thus p | gcd(a™ —1,n). If p—1 is smooth (divisible
only by small primes), then we can guess a multiple
of p — 1 by taking m = Icm(1,2,...,B) for a suitable
number B.



Lenstra’s Elliptic curve factorization method (1985):
In 1985, Lenstra proposed the Elliptic curve factoriza-
tion method (ECM), in which the group F} is replaced
by a group E(Fy), for a suitable chosen elliptic curve E.
In ECM, one hopes that the chosen elliptic curve will
have smooth order over a prime field.

It is now a classical method to use for that purpose
elliptic curves E with large rational torsion over Q (and
known point of infinite order), as the torsion will inject
into E(F,) for all primes p of good reduction. This in
turn makes the order of E(F,) more likely to be smooth.



Construction of high-rank elliptic curves

1. Find a parametric family of elliptic curves over Q
that contains curves with relatively high rank (i.e. an
elliptic curve over Q(t) with large generic rank); e.qg.
by Mestre's polynomial method (*square rooting with
a remainder” p(z) = ¢%(z) — r(z)), by Elkies’ method
which use tools from algebraic geometry or by using
elliptic curves induced by Diophantine triples.

2. Choose in given family best candidates for higher
rank.

General idea: a curve is more likely to have large rank
it |[E(Fp)| is relatively large for many primes p.

Precise statement: Birch and Swinnerton-Dyer conjec-
ture.
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More suitable for computation: Mestre's conditional
upper bound (assuming BSD and GRH), Mestre-Nagao
sums, e.g. the sum:

s(N) = Z |E(FP)|+1_p
o<N. porime  IE(Fp)
(see Elkies & Klagsbrun (2020) for some optimizations,
and Kazalicki & Vlah (2022) for using deep convolu-
tional neural networks and comparison of several similar
sums)

log(p)

3. Try to compute the rank (Cremona’s program mwrank
- very good for curves with rational points of order 2;
Magma; ellrank in PARI/GP), or at least good lower and
upper bounds for the rank.
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Diophantine m-tuples

Diophantus: Find four (positive rational) numbers such
that the product of any two of them, increased by 1, is
a perfect square:

{1 33 17 105}
16°16" 47 16
Fermat: {1,3,8,120}

1-34+1=22 3.841=52
1.84+1=32  3.1204+1 =192,
1-1204+1=112, 8-120+4+ 1 =312
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Definition: A set {a,,a,,...,a,,} of m non-zero integers
(rationals) is called a (rational) Diophantine m-~tuple if
a;-a; + 1 is a perfect square for all 1 <:<j < m.

Question: How large such sets can be?

Euler: There are infinitely many Diophantine quadru-
ples. E.g. {k—1,k+ 1,4k, 16k3 — 4k} for k > 2.

Baker & Davenport (1969): {1,3,8,d} = d =120
(problem raised by Denton (1957), Gardner (1967), van
Lint (1968))

D. & Petho (1998): {1,3} cannot be extended to a
Diophantine quintuple.
13



D. (2001): There does not exist a Diophantine 9-
tuple. There are only finitely many Diophantine 8-
tuples.

D. (2004): There does not exist a Diophantine sex-
tuple. There are only finitely many quintuples.

He, Togbé & Ziegler (2019): There does not exist
a Diophantine quintuple.
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Rational Diophantine m-tuples

There is no known upper bound for the size of rational
Diophantine tuples.

Euler: There are infinitely many rational Diophantine
quintuples. Any pair {a,b} such that ab+1 = r2 can be
extended to a quintuple. E.g. {1,3,8,120, /480 }.

Arkin, Hoggatt & Strauss (1979): Any rational Dio-
phantine triple {a,b,c} can be extended to a quintuple.

D. (1997): Any rational Diophantine quadruple {a,b, ¢, d},
such that abed #= 1, can be extended to a quintuple (in
two different ways, unless the quadruple is “regular”
(such as in the Euler and AHS construction), in which
case one of the extensions is trivial extension by 0).
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If abed = 1, then ab, ac, ad, bc, bd, cd are all per-
fect squares (D., Kazalicki & Petricevi¢c (2021)), and

{a,b,c,d} can be extended to a rational Diophantine

: _ (a+b—c—d)?—4(ab+1)(cd+1)
quintuple by e = = T Ty GeF D (beF 1)

Herrmann, Pethd & Zimmer (1999): A rational Dio-
phantine quadruple has only finitely many extensions to
a rational Diophantine quintuple. They showed that the
conditions on the fifth element of the quintuple lead to
a curve of genus 4, and then they applied Faltings’
theorem.

Stoll (2019): If {1,3,8,120,¢} is a rational Diophan-
: : __ 777480 ,

tine quintuple, then e = 5585647 - Fermat’s set cannot
be extended to a rational Diophantine sextuple.
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Question: If {a,b,c,d,e} and {a,b,c,d, f} are two ex-
tensions from D. (1997) and ef # 0, is it possible that
ef + 1 is a perfect square?

(a+b+c+d)(abed + 1) + 2abe + 2abd + 2acd 4 2bed + 2v/D
(abed — 1)2 ’

e, f=
where

D = (ab4+1)(ac+1)(ad+1)(bc+1)(bd+1)(cd+1).

: . {5 5 32 189 665 3213
Gibbs (1999): {%7 4> 9 4 1521 676}

D., Kazalicki, Miki€¢ & Szikszai (2017): There are
infinitely many rational Diophantine sextuples.

Moreover, there are infinitely many rational Diophan-
tine sextuples with positive elements, and also with any
combination of signs.
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Induced elliptic curves

Let {a,b,c} be a rational Diophantine triple. To extend
this triple to a quadruple, we consider the system

ar +1 =101, bxr + 1 = [, cr + 1 =Ll (2)
It is natural to assign the elliptic curve
£ y® = (az + 1)(bz + 1)(cz + 1) (3)

to the system (2). We say &£ is induced by the triple

{a,b,c}.

T hree rational points on the £ of order 2:
A=[-1/a,0], B=[-1/b0], C=][-1/¢c0]

and also other obvious rational points

P=1[0,1], S = [1/abe,/(ab+ 1)(ac+ 1)(bc+ 1)/abc].

18




The z-coordinate of a point T € £(Q) satisfies (2) if
and only if T — P € 2£(Q).

It holds that S € 2£(Q). Indeed, if ab+1 =172, ac+1 =
s2, bc+ 1 =t2, then S = [2]V, where

rs+rt+st+1 (r+s)(r+¢t)(s+1t)

abc abc

V =

This implies that if z(T) satisfies system (2), then also
the numbers (T + S) satisfy the system.

D. (1997,2001): z(T)x(T £ S) + 1 is always a per-
fect square. With x(T) = d, the numbers x(T £+ S) are
exactly e and f.
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Proposition 1: Let @, T and [0,«a] be three rational
points on an elliptic curve £ over Q given by the equa-
tion y2 = f(x), where f is a monic polynomial of degree
3. Assume that O € {Q,T,Q + T}. Then

z(Q)z(T)z(Q + T) + o
is a perfect square.

Proof: Consider the curve

y? = f(2) — (¢ —2(Q))(z — (1)) (z — 2(Q + T)).

It is a conic which contains three collinear points: Q, T, —(Q+T).
Thus, it is the union of two rational lines, e.g. we have

y? = (Br + 7).
Inserting here x = 0, we get

2(Q)x(T)z(Q + T) + a? = 2.
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The transformation z — xz/abc, y — y/abec, applied to £
leads to

E": y? = (x + ab)(z + ac)(z + bc)

The points P and S become P’ = [0,abc] and S’ =
[1,rst], respectively.

If we apply Proposition 1 with Q = £5’, since =(S’) = 1,
we get a simple proof of the fact that x(T)z(T+S)+1 is
a perfect square (after dividing z(T")x(T'+5")+a2b2c? =
O by a?b2c?).

Now we have a general construction which produces
two rational Diophantine quintuples with four joint el-
ements. So, the union of these two quintuples,
{a7 ba C,$(T-S),$(T),$(T+S)},
is “almost” a rational Diophantine sextuple.
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Assuming that T'T + S € {O,+P}, the only missing
condition is

x(T—-8) - 2(T"+S)+1="0.

To construct examples satisfying this last condition,
we will use Proposition 1 with Q = [2]S’. To get the
desired conclusion, we need the condition z([2]S") =1
to be satisfied. This leads to [2]S' = -5/, i.e. [3]5 =
O. In that case, curve £ would have torsion group
7./27 x 7.]6Z.

Lemma 1: For the point S/ = [1,rst] on E’ it holds
[3]S" = O if and only if

34+ 4(ab+ ac+ be) + 6abe(a + b+ c) + 12(abc)2
— (abe)?(a? + b2 4+ 2 —2ab—2ac—2bc) =0 (4)
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By writing (4) in terms of elementary symmetric poly-
nomials, we find the following family of rational Dio-
phantine triples satisfying the condition of Lemma 1:

18t(t — 1)(t + 1)
(t2—6t+1)(t24+6t+1)
(t — 1) (2 + 6t + 1)
6t(t+ 1)(t2 —6t+ 1)
(t+ 1)(t2 — 6t + 1)
6t(t—1)(t2+6t+1)
Consider now the elliptic curve over Q(t) induced by the
triple {a,b,c}. It has positive rank since the point P =
[0, 1] is of infinite order. Thus, the above described con-
struction produces infinitely many rational Diophantine
sextuples containing the triple {a,b,c}. One such sex-
tuple {a,b,c,d,e, f} is obtained by taking z-coordinates
of points [3]P, [3]P + S, [3]P — S.

a =
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We get d=d1/d2, 6261/62, f: fl/fg, where

d1

€1

€2

f1

6(t+1)(t—1)(t>+6t+1)(t2—6t4+1)

x (8t° 4+ 27t° + 24¢* — 543 + 2442 4 27t + 8)

x (8t° — 27t° 4+ 24t* + 543 + 2442 — 27t 4+ 8)

x (18 4+ 22t° — 174t* + 22t%2 + 1),
t(37t12 — 885t1° + 9735¢°% — 13678t° 4 9735¢* — 885¢2 4 37)2,
—2t(4t° — 111t* + 18t% + 25)

x (3t" 4+ 14t° — 42> + 30t* 4+ 51¢3 4+ 18t° — 12t + 2)

x (3t7 — 14t° — 42¢° — 30t* 4 51t — 18t — 12t — 2)

x (t24+3t—2)(t? =3t —2)(2t° + 3t — 1)

x (2t2 =3t — 12+ 7)) (72 + 1),
3+ 12 —6t+ D)t — 12+ 6t+1)

x (16t1* 4 141¢12 — 1500t1° + 7586t% — 2724t° + 165t* 4 42412 — 12)2,
2t(25t° 4 18t* — 111¢%2 4 4)

x (2t — 12t° 4+ 18t°> + 51t* 4 30t> — 42¢%2 4 14t + 3)

x (2t" 4 12t° + 18t> — 51t* + 303 4 42¢° + 14t — 3)

x (2t2 43t — 1)(2t° — 3t — 1)(t* — 3t — 2)

x (t2 + 3t — 2)(t* + 7)(7t* + 1),

fo=3t+1)(?—-6t+1)(t—1)(#*+6t+1)

x (12t1* — 42412 — 165¢1° 4 2724¢°% — 7586t° + 1500t* — 141t — 16)2.
24



High rank curves with given torsion group

Let {a,b,c} be a (rational) Diophantine triple and E the
elliptic curve

y? = (az + 1) (bz 4+ 1)(cx + 1)
induced by this triple.

By Mazur's theorem: E(Q)tors = Z/27 x Z/2mZ with
m=1,23.4.

D. & Mikic (2014): If a, b, c are positive integers, then
the cases m = 2 and m = 4 are not possible.
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Parametric formulas for the rational Diophantine sex-
tuples {a,b,c,d,e, f} can be used to obtain an elliptic
curve over Q(t) with reasonably high rank. Consider
the curve

E: 2= (dz+1(ex+ 1)(fzr+ 1).
It has three obvious points of order two, but also points
with x-coordinates
0,

—, a, b, c.

def

It can be checked (by suitable specialization) that these
five points are independent points of infinite order on
the curve E over Q(t). Therefore, we get that the rank

of E over Q(t) is > 5 (torsion group is Z/27 x 7./ 27).

Aguirre, D. & Peral (2012), D. & Peral (2020):
Curves with torsion Z/27 x Z/27 and rank 6 over Q(t)
and rank 12 over Q.
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For rational Diophantine triples {a,b, c} satisfying con-
dition (4), the induced elliptic curve has torsion group
7./27 X Z./6Z, since it contains the point S of order 3.
Our parametric family for triples {a,b,c} gives a curve
over Q(t) with generic rank 1.

Within this family of curves, it is possible to find sub-
families of generic rank 2 and particular examples with
rank 6, which both tie the current records of ranks of

curve with torsion

7.)27 x 7.)67

(D. & Peral (2019)).

{7567037280 4161669360289 1359453258559}
7833785281° 569762123040 ° 948852707040
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Elliptic curves with the torsion subgroup |Z/27Z x 7./47Z
have an equation of the form

y? = z(z + xf)(az + azg), r,, T, € Q.

The point [z,2,,x,2,(x; +x,)] is a rational point on the
curve of order 4.

An elliptic curve induced by triple {a, b, c} can we written
in the form

y? = z(z 4 ac — ab)(x + bc — ab).

By comparing these two equations, we get conditions
that ac — ab and bec — ab are perfect squares. We may
expect that this curve will have positive rank, since it
also contains the point [ab, abc].
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A convenient way to fulfill these two conditions is to
choose a and b such that ab = —1. Then ac — ab =
ac+1 =352 and bc —ab =bc+1 = t2. It remains to find
a and c such that {a,—1/a,c} is a Diophantine triple. A
parametric solution is

ar + 1 Ao
a = , C

r— o T (ar+ D(r—a)
Additional points of infinite order if

7'2—|—042—|—2 or oz27'2—|—2042—|—1

are perfect squares.

D. & Peral (2014, 2019): Curves with torsion Z /27 x
Z./47 and rank 4 over Q(t) (Gusic & Tadic algorithm
shows that rank is exactly 4) and rank 9 over Q (both
results are current records for ranks with this torsion).
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Every elliptic curve over Q with torsion group Z/27 X
7Z./87 is induced by a rational Diophantine triple (D.
(2007), Campbell & Goins (2007)).

D. (2007): For each 0 <r < 3, there exists a rational
Diophantine triple {a,b,c} such that the elliptic curve
y2 = (az + 1)(bz + 1)(cz + 1) has the torsion group
isomorphic to |Z/27 x Z/87Z| and the rank equal to r.

Connell (2000), D. (2000): [»r=3

{408 145 145439}
145’ 408 59160 J

D. & Soydan (2022): elliptic curves induced by ra-
tional Diophantine quadruples
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Torsion group Z/47

We will sketch the construction of an elliptic curve over
Q(t) with torsion Z/47 and rank 6 (D. & Peral (2022)).
Previously only rank 5 examples for such curves were
known.

Our starting point is the construction of Elkies (2007)
who notices that this torsion and rank 4 can be obtained
for some elliptic K3 surfaces. In this case the maximum
rank is obtained with the following type of reducible
fibers for such a surface: four of type I4, two of type
I> and four of type I, soO giving a contribution to the
Néron-Severi group of 4(4—-1)+4+2(2—-1)) = 14, hence
the rank over this surface is at most 20 — 2 — 14 = 4,
SO in this sense the Elkies example is optimal.
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The general curve with torsion Z/47 is given by

Y2 4+ aXY 4+ aby = X3 +bX?Z,

where ab(a? — 16b) = 0. A torsion point of order 4 in
this model is (0,0). With a simple change of variables
the surface can be written as
Y2 = X34 (a® — 8b) X% + 16b°X.

Elkies has shown that the discriminant —163 surface
does have an elliptic model that attains rank 4 with
torsion group Z/47, for the following values

a=(8t—-—1)(32t+7)

b=8(t+ 1)(15¢t—-8)(31t - 7).
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Inserting the values of a and b, we get the following K3
elliptic surface E:

E: Y?= X34 (65536t* — 17472t3 — 10176t%2 4 18672t — 3535) X~
+ 1024(t + 1)?(15t — 8)%(31t — 7)?X

It has torsion group Z/47Z and rank 4. A torsion point
of order 4 in this model is

(32(t4+1)(15t—8)(31t—7),25(1+)(—1+48t)(—8+15t) (—7+31t)(7+32t))

and the X-coordinates of four independent points of
infinite order are:

X1 =-361(t+1)(31t—-7),
Xo» = —4(t+ 1)(15t — 8)(16t — 7)2,
X3 =—16(t+ 1)(8t + 7)%(15t — 8),

X, = 4(15t — 8)(16t + 1)?(31t — 7).
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To increase the rank, we impose

—64(1+)2(—4+T7)(4+ 17¢)
(1 + 4t)2
as the X-coordinate of a new point on E. This gives
the condition —(—4 4+ 7¢t)(4 + 17t) = O, which can be
solved with

4(—1 + u?)
(17 4+ 7u?)
The resulting curve has rank 5.
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On the other hand, imposing

576(—4 + 7t)(—8 + 15t)2(—1324 + 5551¢t)
49(—39 + 28t)2
as a the X-coordinate of a new point on E leads to the
condition (=44 7t)(—1324 4+ 5551t) = [, which can be
solved with

4(—331 4+ u?)
oy .
7(—=793 + u?2)
The corresponding curve also has rank 5.
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But now we observe that both conditions

—(—44+7t))(4+17t) = 0O
(=4 + 7t)(—1324 + 5551t) = [,
can be solved simultaneously, since by inserting the so-

lution of the first condition to the second, we obtain
1863 — 539u2 = [J. This can be satisfied with

—7007 — 28r 4+ 1372
7(539 + r2)
So we satisfy both conditions with

u +—

4 (3r2 — 14r — 5390) (10r2 — 14r — 1617)
7 (72r* — 182r3 — 13279r + 98098 + 20917512)

By inserting this into E, we get the curve over Q(r)
with rank 6 (that rank is exactly 6 can be shown by
Gusi¢-Tadic¢ algorithm).

t —
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B(T) = sup{rank (E(Q)) : E(Q)tors = T}

T B(T) > Author(s)
0 28 Elkies (2006)
Z7]27 20 Elkies & Klagsbrun (2020)
7]3Z 15 Elkies & Klagsbrun (2020)
ALY/ 13 Elkies & Klagsbrun (2020)
7./5Z 9 Klagsbrun (2020)
7./6Z 9 Klagsbrun (2020), Voznyy (2020)
Z]TZ 6 Klagsbrun (2020)
7/8Z 6 Elkies (2006), Dujella, MacLeod & Peral (2013),
Voznyy (2021)
7./97 4 Fisher (2009), van Beek (2015), Dujella & Petricevi¢ (2021),
Dujella, Petricevi¢ & Rathbun (2022)
Z7/10Z 4 Dujella (2005,2008), Elkies (2006), Fisher (2016)
7.)127 4 Fisher (2008)
7.]27. X 7,27, 15 Elkies (2009)
7./27 x 7.]AZ 9 Dujella & Peral (2012,2019), Klagsbrun (2020)
Z/27 X 7]6Z 6 Elkies (2006), Dujella, Peral & Tadi¢ (2015),
Dujella & Peral (2020)
7.)27 x 7./8Z 3 Connell (2000), Dujella (2000,2001,2006,2008),

Campbell & Goins (2003), Rathbun (2003,2006,2013),
Flores, Jones, Rollick & Weigandt (2007), Fisher (2009),
AttarBashi, Rathbun & Voznyy (2022),

AttarBashi, Fisher, Rathbun & Voznyy (2022),
AttarBashi, Fisher & Voznyy (2022)

induced by Diophantine triples
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G(T) = sup{rank E(Q(¢)) : E(Q(%))tors =T’}

T G(T) > Author(s)
0 18 Elkies (2006)
7.)27. 11 Elkies (2009)
7/3Z 7 Elkies (2007)
7]4Z 6 Dujella & Peral (2022)
Z7./5Z 3 Lecacheux (2001), Eroshkin (2009), MaclLeod (2014)
7./6Z 3 Lecacheux (2001), Kihara (2006), Eroshkin (2008),
Woo (2008), Dujella & Peral (2012,2020),
MaclLeod (2014,2015), Voznyy (2021)
Z]7Z 1 Kulesz (1998), Lecacheux (2003), Rabarison (2008),
Harrache (2009), MacLeod (2014)
ARV 2 Dujella & Peral (2012), MacLeod (2013),
Dujella, Kazalicki & Peral (2021)
7./97 0 Kubert (1976)
7./10Z 0 Kubert (1976)
7.)127 0 Kubert (1976)
Z./27 x 7] 27 7 Elkies (2007)
7/27 x 7.] 47 4 Dujella & Peral (2012)
Z7]27 X 7.]6Z 2 Dujella & Peral (2012,2015,2017), MacLeod (2013),
Dujella, Kazalicki & Peral (2021)
7.)27 x 7./87Z 0 Kubert (1976)

induced by Diophantine triples
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C(T) = limsup{rank E(Q) : E(Q)tors =T}

T c(T)> | PPVW Author(s)
0 19 21 Elkies (2006.)
727 11 13 Elkies (2007)
7.)37 7 9 Elkies (2007)
ALY/ 6 7 Elkies (2007), Dujella & Peral (2021,2022)
Z7./5Z 4 5 Eroshkin (2009)
7.]6Z 5 5 Eroshkin (2009)
Z]7Z 2 3 Lecacheux (2003), Elkies (2006), Rabarison (2008),
Harrache (2009)
7./8Z 3 3 Dujella & Peral (2012),
Dujella, Kazalicki & Peral (2021)
7./97 1 2 Atkin & Morain (1993), Kulesz (1998), Rabarison (2008),
Gasull, Manosa & Xarles (2010)
Z./10Z 1 2 Atkin & Morain (1993), Kulesz (1998),
Rabarison (2008)
7]127 1 2 Suyama (1985), Kulesz (1998), Rabarison (2008),
Halbeisen, Hungerbiihler, Voznyy & Zargar (2021)
7.)27. % 7./ 27, 8 9 Elkies (2007)
7.)27. X 7] AT 5 5 Eroshkin (2009)
Z7]27 x 7./]6Z 3 3 Dujella & Peral (2013), Dujella, Kazalicki & Peral (2021)
7./27 X 7./]87 1 2 Atkin & Morain (1993), Kulesz (1998),

Lecacheux (2002), Campbell & Goins (2003),
Rabarison (2008)

known lower bound coincides with heuristic upper bound due to
Park, Poonen, Voight and Wood (2019)
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Rank 3 family with torsion group 7Z/27 x 7/6Z

D., Kazalicki & Peral (2021):
We start with the curve Y2 = X3 4+ aX?2 4+ bX of rank
2 over Q(u) obtained by using Diophantine triples (D.
& Peral (2015)):
a = u'® — 60ul® 4+ 1634u* — 27768u!3 4 334132412 — 3017412u!!
4 20987282u!° — 1136274244° 4 480725533u® — 1590783936w’
4 4113507272u® — 8279778528u° + 12836014912u* — 1493429683243
4+ 12303261824u2 — 6324810240u + 1475789056,
b= —27u3(u—4)3(2u — 7)3(u* — 24u3 + 15202 — 336u + 196)
x (u* — 12u> + 62u? — 168u 4+ 196)3(2u* — 30u® + 169u? — 420u 4+ 392).

The X-coordinates of two independent points of infinite

order are
—27u?(u — 4)%2(2u — 7)?(u? — 8u + 14)%(u* — 24u3 4 152u? — 336w + 196),

27
— Zu?(u —4)2(2u —7)%(u? — Tu + 14)?(u* — 244> 4 152u? — 336u + 196).
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Imposing
%%u(u —4)Ru—T7)(u? —Tu+14)?(u* — 124> + 62u* — 168u+ 196)2
as the X-coordinate of a new point, leads to the con-
dition

4u* — 66u> 4 383u? — 924u + 784 = 2,

which has a rational solution (u,t) = (0,28), and thus
can be transformed into elliptic curve

y2 = x> — 2 — 4562 + 3456

of rank 2 (with generators R{ = (20,—44) and Ry =
(4/9,—1540/27)) and torsion group Z/27 x 7./27.
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The root numbers of elliptic curves corresponding to
the points nR{ + mRo> for small n,m € Z are presented
in next figure (the points which differ by the point of
order two correspond to the isomorphic elliptic curves,
so they are not included in the figure). There are 194
curves with the root number 1, and 168 curves with the
root number —1, which suggests that the root numbers
are evenly distributed in this family.

Thanks to Maksym VVoznyy and the members of Mersenne
Forum for the help with factorization need for the com-
putations of roots numbers.
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The blue (orange) point with coordinates (n,m) rep-
resents the elliptic curve with root number one (minus
one) that corresponds to the point nR1 + mR».
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Thank you very much
for your attention!



