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Torsion and rank of elliptic curves over Q

Let E be an elliptic curve over Q.

By the Mordell-Weil theorem, the group E(Q) of ratio-

nals points on E is a finitely generated abelian group.

Hence, it is the product of the torsion group and r ≥ 0

copies of the infinite cyclic group:

E(Q) ∼= E(Q)tors × Zr.
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By Mazur’s theorem, we know that E(Q)tors is one of
the following 15 groups:

Z/nZ with 1 ≤ n ≤ 10 or n = 12,
Z/2Z× Z/2mZ with 1 ≤ m ≤ 4.

It is not known which values of rank r are possible for
elliptic curves over Q. It has been conjectured that
there exist elliptic curves of arbitrarily high rank, and
even for each of the torsion groups in Mazur’s theorem.

However there are also recent heuristic arguments that
suggest the boundedness of the rank of elliptic curves.
According to this heuristic, only a finite number of
curves would have rank higher that 21.

The current record is an example of elliptic curve over
Q with rank ≥ 28, found by Elkies in 2006.
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B(T ) = sup{rank (E(Q)) : torsion group of E over Q is T}.

Montgomery (1987): Proposed the use of elliptic curves
with large torsion group and positive rank in factoriza-
tion.

It follows from results of Montgomery, Suyama, Atkin
& Morain (Finding suitable curves for the elliptic curve
method of factorization, 1993), that B(T ) ≥ 1 for all
torsion groups T .

Womack (2000): B(T ) ≥ 2 for all T

D. (2003): B(T ) ≥ 3 for all T
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Elliptic curves over quadratic fields

Kenku & Momose (1988), Kamienny (1992):

Let E be an elliptic curve over a quadratic field E(K).

The torsion group of E(K) is isomorphic to one of the

following groups:

Z/nZ, where n = 1,2,3, . . .16 or 18;

Z/2Z× Z/2nZ, where n = 1,2,3,4,5,6;

Z/3Z× Z/3nZ, where n = 1 or 2 (only if K = Q(
√
−3));

Z/4Z× Z/4Z (only if K = Q(i)).

Note that if torsion group over a number field K con-

tains Z/mZ × Z/mZ, then the m-th roots of unity lie

in K.
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Bosman, Bruin, D., Najman (2014):

There exist elliptic curves over quadratic fields with pos-
itive rank and torsion Z/15Z (rank ≥ 1 over Q(

√
345),

Z/18Z (rank ≥ 2 over Q(
√
26521), Z/2Z× Z/10Z (rank

≥ 4 over Q(
√
55325286553) and Z/2Z × Z/12Z (rank

≥ 4 over Q(
√
2947271015)).

Together with Rabarison (2010), this implies that there
exist curves with positive rank for all 26 possible torsion
groups over quadratic fields.

All elliptic curves over quadratic fields with torsions
Z/13Z or Z/18Z have even rank (false complex mul-
tiplication).

Similar results for cubic and quartic fields.
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Aguirre, D., Jukić Bokun, Peral (2014), Najman

(2014), Voznyy (2022):

For each of 26 possible torsion groups there exist an

elliptic curve over some quadratic field with this torsion

group and with rank ≥ 2.

In the case of the 15 possible torsion groups of elliptic

curves over Q (and other torsion groups which admit

a model with rational coefficients), we consider curves

with rational coefficients, and in order to determine

their rank over a quadratic field Q(
√
d) we use the for-

mula

rank(E(Q(
√
d)) = rank(E(Q)) + rank(E(d)(Q)), (1)

where E(d) denotes the d-quadratic twist of E.
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Applications of elliptic curves in factorization

Finding elliptic curves with positive rank and large tor-

sion over number fields is not just a curiosity. Elliptic

curves with large torsion and positive rank over the ra-

tionals have long been used for factorization, starting

with Montgomery, Atkin and Morain.

Also examining the torsion of an elliptic curve over num-

ber fields of small degree has some additional benefits

(Brier & Clavier (2010), D. & Najman (2012), Bosman,

Bruin, D. & Najman (2014), Morain (2022, ANTS)).
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It is well-known that elliptic curves have applications

in public-key cryptography and also in factorization of

large integers and primality proving. The main idea is

to replace the group F∗p with (fixed) order p − 1, by a

group E(Fp) with more flexible order. Namely, by Hasse

theorem we have

p+1− 2
√
p < |E(Fp)| < p+1+ 2

√
p.

Pollard’s p− 1 factorization method (1974):

Let n be a composite integer with unknown prime factor

p. For any multiple m of p−1 we have am ≡ 1 (mod p),

and thus p | gcd(am− 1, n). If p− 1 is smooth (divisible

only by small primes), then we can guess a multiple

of p − 1 by taking m = lcm(1,2, ..., B) for a suitable

number B.
8



Lenstra’s Elliptic curve factorization method (1985):

In 1985, Lenstra proposed the Elliptic curve factoriza-

tion method (ECM), in which the group F∗p is replaced

by a group E(Fp), for a suitable chosen elliptic curve E.

In ECM, one hopes that the chosen elliptic curve will

have smooth order over a prime field.

It is now a classical method to use for that purpose

elliptic curves E with large rational torsion over Q (and

known point of infinite order), as the torsion will inject

into E(Fp) for all primes p of good reduction. This in

turn makes the order of E(Fp) more likely to be smooth.
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Construction of high-rank elliptic curves

1. Find a parametric family of elliptic curves over Q
that contains curves with relatively high rank (i.e. an
elliptic curve over Q(t) with large generic rank); e.g.
by Mestre’s polynomial method (“square rooting with
a remainder” p(x) = q2(x) − r(x)), by Elkies’ method
which use tools from algebraic geometry or by using
elliptic curves induced by Diophantine triples.

2. Choose in given family best candidates for higher
rank.

General idea: a curve is more likely to have large rank
if |E(Fp)| is relatively large for many primes p.

Precise statement: Birch and Swinnerton-Dyer conjec-
ture.
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More suitable for computation: Mestre’s conditional

upper bound (assuming BSD and GRH), Mestre-Nagao

sums, e.g. the sum:

s(N) =
∑

p≤N, p prime

|E(Fp)|+1− p

|E(Fp)|
log(p)

(see Elkies & Klagsbrun (2020) for some optimizations,

and Kazalicki & Vlah (2022) for using deep convolu-

tional neural networks and comparison of several similar

sums)

3. Try to compute the rank (Cremona’s program mwrank

- very good for curves with rational points of order 2;

Magma; ellrank in PARI/GP), or at least good lower and

upper bounds for the rank.
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Diophantine m-tuples

Diophantus: Find four (positive rational) numbers such

that the product of any two of them, increased by 1, is

a perfect square: {
1

16
,
33

16
,
17

4
,
105

16

}

Fermat: {1,3,8,120}

1 · 3+ 1 = 22, 3 · 8+ 1 = 52,

1 · 8+ 1 = 32, 3 · 120+ 1 = 192,

1 · 120+ 1 = 112, 8 · 120+ 1 = 312.
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Definition: A set {a1, a2, . . . , am} of m non-zero integers

(rationals) is called a (rational) Diophantine m-tuple if

ai · aj +1 is a perfect square for all 1 ≤ i < j ≤ m.

Question: How large such sets can be?

Euler: There are infinitely many Diophantine quadru-

ples. E.g. {k − 1, k +1,4k,16k3 − 4k} for k ≥ 2.

Baker & Davenport (1969): {1,3,8, d} ⇒ d = 120

(problem raised by Denton (1957), Gardner (1967), van

Lint (1968))

D. & Pethő (1998): {1,3} cannot be extended to a

Diophantine quintuple.
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D. (2001): There does not exist a Diophantine 9-

tuple. There are only finitely many Diophantine 8-

tuples.

D. (2004): There does not exist a Diophantine sex-

tuple. There are only finitely many quintuples.

He, Togbé & Ziegler (2019): There does not exist

a Diophantine quintuple.
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Rational Diophantine m-tuples

There is no known upper bound for the size of rational
Diophantine tuples.

Euler: There are infinitely many rational Diophantine
quintuples. Any pair {a, b} such that ab+1 = r2 can be
extended to a quintuple. E.g. {1,3,8,120, 777480

8288641}.

Arkin, Hoggatt & Strauss (1979): Any rational Dio-
phantine triple {a, b, c} can be extended to a quintuple.

D. (1997): Any rational Diophantine quadruple {a, b, c, d},
such that abcd ̸= 1, can be extended to a quintuple (in
two different ways, unless the quadruple is “regular”
(such as in the Euler and AHS construction), in which
case one of the extensions is trivial extension by 0).
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If abcd = 1, then ab, ac, ad, bc, bd, cd are all per-

fect squares (D., Kazalicki & Petričević (2021)), and

{a, b, c, d} can be extended to a rational Diophantine

quintuple by e = (a+b−c−d)2−4(ab+1)(cd+1)
4d(ab+1)(ac+1)(bc+1) .

Herrmann, Pethő & Zimmer (1999): A rational Dio-

phantine quadruple has only finitely many extensions to

a rational Diophantine quintuple. They showed that the

conditions on the fifth element of the quintuple lead to

a curve of genus 4, and then they applied Faltings’

theorem.

Stoll (2019): If {1,3,8,120, e} is a rational Diophan-

tine quintuple, then e = 777480
8288641. Fermat’s set cannot

be extended to a rational Diophantine sextuple.
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Question: If {a, b, c, d, e} and {a, b, c, d, f} are two ex-
tensions from D. (1997) and ef ̸= 0, is it possible that
ef +1 is a perfect square?

e, f =
(a+b+c+d)(abcd+1)+ 2abc+2abd+2acd+2bcd± 2

√
D

(abcd− 1)2
,

where

D = (ab+1)(ac+1)(ad+1)(bc+1)(bd+1)(cd+1).

Gibbs (1999):
{

5
36,

5
4,

32
9 , 189

4 , 665
1521,

3213
676

}
D., Kazalicki, Mikić & Szikszai (2017): There are
infinitely many rational Diophantine sextuples.

Moreover, there are infinitely many rational Diophan-
tine sextuples with positive elements, and also with any
combination of signs.
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Induced elliptic curves

Let {a, b, c} be a rational Diophantine triple. To extend
this triple to a quadruple, we consider the system

ax+1 = □, bx+1 = □, cx+1 = □. (2)

It is natural to assign the elliptic curve

E : y2 = (ax+1)(bx+1)(cx+1) (3)

to the system (2). We say E is induced by the triple
{a, b, c}.

Three rational points on the E of order 2:

A = [−1/a,0] , B = [−1/b,0] , C = [−1/c,0]

and also other obvious rational points

P = [0,1], S = [1/abc,
√
(ab+1)(ac+1)(bc+1)/abc].

18



The x-coordinate of a point T ∈ E(Q) satisfies (2) if

and only if T − P ∈ 2E(Q).

It holds that S ∈ 2E(Q). Indeed, if ab+1 = r2, ac+1 =

s2, bc+1 = t2, then S = [2]V , where

V =

[
rs+ rt+ st+1

abc
,
(r + s)(r + t)(s+ t)

abc

]
.

This implies that if x(T ) satisfies system (2), then also

the numbers x(T ± S) satisfy the system.

D. (1997,2001): x(T )x(T ± S) + 1 is always a per-

fect square. With x(T ) = d, the numbers x(T ± S) are

exactly e and f .
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Proposition 1: Let Q, T and [0, α] be three rational

points on an elliptic curve E over Q given by the equa-

tion y2 = f(x), where f is a monic polynomial of degree

3. Assume that O ̸∈ {Q,T,Q+ T}. Then

x(Q)x(T )x(Q+ T ) + α2

is a perfect square.

Proof: Consider the curve

y2 = f(x)− (x− x(Q))(x− x(T ))(x− x(Q+ T )).

It is a conic which contains three collinear points: Q, T , −(Q+T ).
Thus, it is the union of two rational lines, e.g. we have

y2 = (βx+ γ)2.

Inserting here x = 0, we get

x(Q)x(T )x(Q+ T ) + α2 = γ2.
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The transformation x 7→ x/abc, y 7→ y/abc, applied to E
leads to

E′ : y2 = (x+ ab)(x+ ac)(x+ bc)

The points P and S become P ′ = [0, abc] and S′ =
[1, rst], respectively.

If we apply Proposition 1 with Q = ±S′, since x(S′) = 1,
we get a simple proof of the fact that x(T )x(T±S)+1 is
a perfect square (after dividing x(T ′)x(T ′±S′)+a2b2c2 =
□ by a2b2c2).

Now we have a general construction which produces
two rational Diophantine quintuples with four joint el-
ements. So, the union of these two quintuples,

{a, b, c, x(T − S), x(T ), x(T + S)},
is “almost” a rational Diophantine sextuple.
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Assuming that T, T ± S ̸∈ {O,±P}, the only missing
condition is

x(T − S) · x(T + S) + 1 = □.

To construct examples satisfying this last condition,
we will use Proposition 1 with Q = [2]S′. To get the
desired conclusion, we need the condition x([2]S′) = 1
to be satisfied. This leads to [2]S′ = −S′, i.e. [3]S′ =
O. In that case, curve E would have torsion group
Z/2Z× Z/6Z.

Lemma 1: For the point S′ = [1, rst] on E′ it holds
[3]S′ = O if and only if

3 + 4(ab+ ac+ bc) + 6abc(a+ b+ c) + 12(abc)2

− (abc)2(a2 + b2 + c2 − 2ab− 2ac− 2bc) = 0 (4)

22



By writing (4) in terms of elementary symmetric poly-
nomials, we find the following family of rational Dio-
phantine triples satisfying the condition of Lemma 1:

a =
18t(t− 1)(t+1)

(t2 − 6t+1)(t2 +6t+1)
,

b =
(t− 1)(t2 +6t+1)2

6t(t+1)(t2 − 6t+1)
,

c =
(t+1)(t2 − 6t+1)2

6t(t− 1)(t2 +6t+1)
.

Consider now the elliptic curve over Q(t) induced by the
triple {a, b, c}. It has positive rank since the point P =
[0,1] is of infinite order. Thus, the above described con-
struction produces infinitely many rational Diophantine
sextuples containing the triple {a, b, c}. One such sex-
tuple {a, b, c, d, e, f} is obtained by taking x-coordinates
of points [3]P , [3]P + S, [3]P − S.

23



We get d = d1/d2, e = e1/e2, f = f1/f2, where
d1 = 6(t+1)(t− 1)(t2 +6t+1)(t2 − 6t+1)

× (8t6 +27t5 +24t4 − 54t3 +24t2 +27t+8)
× (8t6 − 27t5 +24t4 +54t3 +24t2 − 27t+8)
× (t8 +22t6 − 174t4 +22t2 +1),

d2 = t(37t12 − 885t10 +9735t8 − 13678t6 +9735t4 − 885t2 +37)2,
e1 = −2t(4t6 − 111t4 +18t2 +25)

× (3t7 +14t6 − 42t5 +30t4 +51t3 +18t2 − 12t+2)
× (3t7 − 14t6 − 42t5 − 30t4 +51t3 − 18t2 − 12t− 2)
× (t2 +3t− 2)(t2 − 3t− 2)(2t2 +3t− 1)
× (2t2 − 3t− 1)(t2 +7)(7t2 +1),

e2 = 3(t+1)(t2 − 6t+1)(t− 1)(t2 +6t+1)
× (16t14 +141t12 − 1500t10 +7586t8 − 2724t6 +165t4 +424t2 − 12)2,

f1 = 2t(25t6 +18t4 − 111t2 +4)
× (2t7 − 12t6 +18t5 +51t4 +30t3 − 42t2 +14t+3)
× (2t7 +12t6 +18t5 − 51t4 +30t3 +42t2 +14t− 3)
× (2t2 +3t− 1)(2t2 − 3t− 1)(t2 − 3t− 2)
× (t2 +3t− 2)(t2 +7)(7t2 +1),

f2 = 3(t+1)(t2 − 6t+1)(t− 1)(t2 +6t+1)
× (12t14 − 424t12 − 165t10 +2724t8 − 7586t6 +1500t4 − 141t2 − 16)2.
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High rank curves with given torsion group

Let {a, b, c} be a (rational) Diophantine triple and E the

elliptic curve

y2 = (ax+1)(bx+1)(cx+1)

induced by this triple.

By Mazur’s theorem: E(Q)tors = Z/2Z × Z/2mZ with

m = 1,2,3,4.

D. & Mikić (2014): If a, b, c are positive integers, then

the cases m = 2 and m = 4 are not possible.
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Parametric formulas for the rational Diophantine sex-
tuples {a, b, c, d, e, f} can be used to obtain an elliptic
curve over Q(t) with reasonably high rank. Consider
the curve

E : y2 = (dx+1)(ex+1)(fx+1).

It has three obvious points of order two, but also points
with x-coordinates

0,
1

def
, a, b, c.

It can be checked (by suitable specialization) that these
five points are independent points of infinite order on
the curve E over Q(t). Therefore, we get that the rank
of E over Q(t) is ≥ 5 (torsion group is Z/2Z× Z/2Z).

Aguirre, D. & Peral (2012), D. & Peral (2020):
Curves with torsion Z/2Z × Z/2Z and rank 6 over Q(t)
and rank 12 over Q.
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For rational Diophantine triples {a, b, c} satisfying con-

dition (4), the induced elliptic curve has torsion group

Z/2Z × Z/6Z, since it contains the point S of order 3.

Our parametric family for triples {a, b, c} gives a curve

over Q(t) with generic rank 1.

Within this family of curves, it is possible to find sub-

families of generic rank 2 and particular examples with

rank 6, which both tie the current records of ranks of

curve with torsion Z/2Z× Z/6Z (D. & Peral (2019)).{
7567037280

7833785281
,
4161669360289

569762123040
,
1359453258559

948852707040

}
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Elliptic curves with the torsion subgroup Z/2Z× Z/4Z
have an equation of the form

y2 = x(x+ x2
1
)(x+ x2

2
), x1, x2 ∈ Q.

The point [x1x2, x1x2(x1+x2)] is a rational point on the

curve of order 4.

An elliptic curve induced by triple {a, b, c} can we written

in the form

y2 = x(x+ ac− ab)(x+ bc− ab).

By comparing these two equations, we get conditions

that ac − ab and bc − ab are perfect squares. We may

expect that this curve will have positive rank, since it

also contains the point [ab, abc].
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A convenient way to fulfill these two conditions is to
choose a and b such that ab = −1. Then ac − ab =
ac+1 = s2 and bc− ab = bc+1 = t2. It remains to find
a and c such that {a,−1/a, c} is a Diophantine triple. A
parametric solution is

a =
ατ +1

τ − α
, c =

4ατ

(ατ +1)(τ − α)
.

Additional points of infinite order if

τ2 + α2 +2 or α2τ2 +2α2 +1

are perfect squares.

D. & Peral (2014, 2019): Curves with torsion Z/2Z×
Z/4Z and rank 4 over Q(t) (Gusić & Tadić algorithm
shows that rank is exactly 4) and rank 9 over Q (both
results are current records for ranks with this torsion).
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Every elliptic curve over Q with torsion group Z/2Z ×
Z/8Z is induced by a rational Diophantine triple (D.

(2007), Campbell & Goins (2007)).

D. (2007): For each 0 ≤ r ≤ 3, there exists a rational

Diophantine triple {a, b, c} such that the elliptic curve

y2 = (ax + 1)(bx + 1)(cx + 1) has the torsion group

isomorphic to Z/2Z× Z/8Z and the rank equal to r.

Connell (2000), D. (2000): r = 3{
408

145
, −

145

408
, −

145439

59160

}
.

D. & Soydan (2022): elliptic curves induced by ra-

tional Diophantine quadruples
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Torsion group Z/4Z

We will sketch the construction of an elliptic curve over
Q(t) with torsion Z/4Z and rank 6 (D. & Peral (2022)).
Previously only rank 5 examples for such curves were
known.

Our starting point is the construction of Elkies (2007)
who notices that this torsion and rank 4 can be obtained
for some elliptic K3 surfaces. In this case the maximum
rank is obtained with the following type of reducible
fibers for such a surface: four of type I4, two of type
I2 and four of type I1, so giving a contribution to the
Néron-Severi group of 4(4−1)+2(2−1)) = 14, hence
the rank over this surface is at most 20 − 2 − 14 = 4,
so in this sense the Elkies example is optimal.
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The general curve with torsion Z/4Z is given by

Y 2 + aXY + abY = X3 + bX2,

where ab(a2 − 16b) ̸= 0. A torsion point of order 4 in

this model is (0,0). With a simple change of variables

the surface can be written as

Y 2 = X3 + (a2 − 8b)X2 +16b2X.

Elkies has shown that the discriminant −163 surface

does have an elliptic model that attains rank 4 with

torsion group Z/4Z, for the following values

a = (8t− 1)(32t+7)

b = 8(t+1)(15t− 8)(31t− 7).
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Inserting the values of a and b, we get the following K3
elliptic surface E:

E : Y 2 = X3 + (65536t4 − 17472t3 − 10176t2 +18672t− 3535)X2

+1024(t+1)2(15t− 8)2(31t− 7)2X

It has torsion group Z/4Z and rank 4. A torsion point
of order 4 in this model is

(32(t+1)(15t−8)(31t−7),25(1+t)(−1+8t)(−8+15t)(−7+31t)(7+32t))

and the X-coordinates of four independent points of
infinite order are:

X1 = −361(t+1)(31t− 7),

X2 = −4(t+1)(15t− 8)(16t− 7)2,

X3 = −16(t+1)(8t+7)2(15t− 8),

X4 = 4(15t− 8)(16t+1)2(31t− 7).

33



To increase the rank, we impose

−64(1 + t)2(−4+ 7t)(4 + 17t)

(1 + 4t)2

as the X-coordinate of a new point on E. This gives

the condition −(−4 + 7t)(4 + 17t) = □, which can be

solved with

t 7→
4(−1+ u2)

(17 + 7u2)
.

The resulting curve has rank 5.
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On the other hand, imposing

576(−4+ 7t)(−8+ 15t)2(−1324+ 5551t)

49(−39+ 28t)2

as a the X-coordinate of a new point on E leads to the

condition (−4+7t)(−1324+5551t) = □, which can be

solved with

t 7→
4(−331+ u2)

7(−793+ u2)
.

The corresponding curve also has rank 5.

35



But now we observe that both conditions

−(−4+ 7t)(4 + 17t) = □

(−4+ 7t)(−1324+ 5551t) = □,

can be solved simultaneously, since by inserting the so-
lution of the first condition to the second, we obtain
1863− 539u2 = □. This can be satisfied with

u 7→
−7007− 28r +13r2

7(539+ r2)
.

So we satisfy both conditions with

t 7→
4
(
3r2 − 14r − 5390

) (
10r2 − 14r − 1617

)
7
(
72r4 − 182r3 − 13279r2 +98098r +20917512

).
By inserting this into E, we get the curve over Q(r)
with rank 6 (that rank is exactly 6 can be shown by
Gusić-Tadić algorithm).
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B(T ) = sup{rank (E(Q)) : E(Q)tors ∼= T}

T B(T ) ≥ Author(s)

0 28 Elkies (2006)

Z/2Z 20 Elkies & Klagsbrun (2020)

Z/3Z 15 Elkies & Klagsbrun (2020)

Z/4Z 13 Elkies & Klagsbrun (2020)

Z/5Z 9 Klagsbrun (2020)

Z/6Z 9 Klagsbrun (2020), Voznyy (2020)

Z/7Z 6 Klagsbrun (2020)

Z/8Z 6 Elkies (2006), Dujella, MacLeod & Peral (2013),
Voznyy (2021)

Z/9Z 4 Fisher (2009), van Beek (2015), Dujella & Petričević (2021),
Dujella, Petričević & Rathbun (2022)

Z/10Z 4 Dujella (2005,2008), Elkies (2006), Fisher (2016)

Z/12Z 4 Fisher (2008)

Z/2Z× Z/2Z 15 Elkies (2009)

Z/2Z× Z/4Z 9 Dujella & Peral (2012,2019), Klagsbrun (2020)

Z/2Z× Z/6Z 6 Elkies (2006), Dujella, Peral & Tadić (2015),
Dujella & Peral (2020)

Z/2Z× Z/8Z 3 Connell (2000), Dujella (2000,2001,2006,2008),
Campbell & Goins (2003), Rathbun (2003,2006,2013),
Flores, Jones, Rollick & Weigandt (2007), Fisher (2009),
AttarBashi, Rathbun & Voznyy (2022),
AttarBashi, Fisher, Rathbun & Voznyy (2022),
AttarBashi, Fisher & Voznyy (2022)

induced by Diophantine triples
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G(T ) = sup{rankE(Q(t)) : E(Q(t))tors ∼= T}

T G(T ) ≥ Author(s)

0 18 Elkies (2006)

Z/2Z 11 Elkies (2009)

Z/3Z 7 Elkies (2007)

Z/4Z 6 Dujella & Peral (2022)

Z/5Z 3 Lecacheux (2001), Eroshkin (2009), MacLeod (2014)

Z/6Z 3 Lecacheux (2001), Kihara (2006), Eroshkin (2008),
Woo (2008), Dujella & Peral (2012,2020),
MacLeod (2014,2015), Voznyy (2021)

Z/7Z 1 Kulesz (1998), Lecacheux (2003), Rabarison (2008),
Harrache (2009), MacLeod (2014)

Z/8Z 2 Dujella & Peral (2012), MacLeod (2013),
Dujella, Kazalicki & Peral (2021)

Z/9Z 0 Kubert (1976)

Z/10Z 0 Kubert (1976)

Z/12Z 0 Kubert (1976)

Z/2Z× Z/2Z 7 Elkies (2007)

Z/2Z× Z/4Z 4 Dujella & Peral (2012)

Z/2Z× Z/6Z 2 Dujella & Peral (2012,2015,2017), MacLeod (2013),
Dujella, Kazalicki & Peral (2021)

Z/2Z× Z/8Z 0 Kubert (1976)

induced by Diophantine triples
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C(T ) = lim sup{rankE(Q) : E(Q)tors ∼= T}

T C(T ) ≥ PPVW Author(s)

0 19 21 Elkies (2006.)

Z/2Z 11 13 Elkies (2007)

Z/3Z 7 9 Elkies (2007)

Z/4Z 6 7 Elkies (2007), Dujella & Peral (2021,2022)

Z/5Z 4 5 Eroshkin (2009)

Z/6Z 5 5 Eroshkin (2009)

Z/7Z 2 3 Lecacheux (2003), Elkies (2006), Rabarison (2008),
Harrache (2009)

Z/8Z 3 3 Dujella & Peral (2012),
Dujella, Kazalicki & Peral (2021)

Z/9Z 1 2 Atkin & Morain (1993), Kulesz (1998), Rabarison (2008),
Gasull, Manosa & Xarles (2010)

Z/10Z 1 2 Atkin & Morain (1993), Kulesz (1998),
Rabarison (2008)

Z/12Z 1 2 Suyama (1985), Kulesz (1998), Rabarison (2008),
Halbeisen, Hungerbühler, Voznyy & Zargar (2021)

Z/2Z× Z/2Z 8 9 Elkies (2007)

Z/2Z× Z/4Z 5 5 Eroshkin (2009)

Z/2Z× Z/6Z 3 3 Dujella & Peral (2013), Dujella, Kazalicki & Peral (2021)

Z/2Z× Z/8Z 1 2 Atkin & Morain (1993), Kulesz (1998),
Lecacheux (2002), Campbell & Goins (2003),
Rabarison (2008)

known lower bound coincides with heuristic upper bound due to

Park, Poonen, Voight and Wood (2019)
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Rank 3 family with torsion group Z/2Z× Z/6Z

D., Kazalicki & Peral (2021):

We start with the curve Y 2 = X3 + aX2 + bX of rank
2 over Q(u) obtained by using Diophantine triples (D.
& Peral (2015)):

a = u16 − 60u15 +1634u14 − 27768u13 +334132u12 − 3017412u11

+20987282u10 − 113627424u9 +480725533u8 − 1590783936u7

+4113507272u6 − 8279778528u5 +12836014912u4 − 14934296832u3

+12303261824u2 − 6324810240u+1475789056,

b = −27u3(u− 4)3(2u− 7)3(u4 − 24u3 +152u2 − 336u+196)

× (u4 − 12u3 +62u2 − 168u+196)3(2u4 − 30u3 +169u2 − 420u+392).

The X-coordinates of two independent points of infinite
order are

− 27u2(u− 4)2(2u− 7)2(u2 − 8u+14)2(u4 − 24u3 +152u2 − 336u+196),

−
27

4
u2(u− 4)2(2u− 7)2(u2 − 7u+14)2(u4 − 24u3 +152u2 − 336u+196).
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Imposing

27

4
u(u−4)(2u−7)(u2−7u+14)2(u4−12u3+62u2−168u+196)2

as the X-coordinate of a new point, leads to the con-

dition

4u4 − 66u3 +383u2 − 924u+784 = t2,

which has a rational solution (u, t) = (0,28), and thus

can be transformed into elliptic curve

y2 = x3 − x2 − 456x+3456

of rank 2 (with generators R1 = (20,−44) and R2 =

(4/9,−1540/27)) and torsion group Z/2Z× Z/2Z.
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The root numbers of elliptic curves corresponding to

the points nR1 +mR2 for small n,m ∈ Z are presented

in next figure (the points which differ by the point of

order two correspond to the isomorphic elliptic curves,

so they are not included in the figure). There are 194

curves with the root number 1, and 168 curves with the

root number −1, which suggests that the root numbers

are evenly distributed in this family.

Thanks to Maksym Voznyy and the members of Mersenne

Forum for the help with factorization need for the com-

putations of roots numbers.
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The blue (orange) point with coordinates (n,m) rep-

resents the elliptic curve with root number one (minus

one) that corresponds to the point nR1 +mR2.
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Thank you very much

for your attention!


